Chapter 1
Basic Definitions

1.1 Notation and Preliminaries

Definition 1.1.1 » Graph ]

A (simple) graph G = (V, E) consists of a finite vertex set V and an edge set E C (‘2/) j

Before delving deeper, let’s establish definitions for various classes of graphs.

1. Undirected Graph: An undirected graph is characterized by edges (x,y) being equivalent to

(Y, x)-
o
(z) (&—®

Figure 1.1: Undirected graph

2. Directed Graph: A directed graph or digraph G = (V, E) represents edges as ordered pairs

of vertices,ie., ECV x V.

Figure 1.2: Directed graph
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O—O—0

Figure 1.3: Multigraph

3. Multigraph: A mult1graE:/h (V, E) where there can be more than one edge between any
given vertices, i.e., E C 1s a multlset

4. Pseudograph: A pseudograph G = (V,E) allows loops and multiple edges. Formally,
E is a subset of pairs of distinct vertices in V ((‘2/)) and pairs with identical elements

{(v,v) |[v e V}),ie, EC (‘2/) U{(v,v) |veV}

Figure 1.4: Pseudograph

5. Hypergraph: A hypergraph G = (V, E) has edges that can be any subset of vertices, expressed
as E C 2V,

Figure 1.5: Hypergraph ([5],{{1,2,3,4},{1,2,5},{3,5}})

6. Infinite Graph: A graph where the set V or E is infinite.



1.2. IMPORTANT TERMINOLOGIES 3

1.2 Important Terminologies

([ Definition 1.2.1 » Order and Size } N

The order of a graph, denoted by |V (G)|, is defined as the cardinality of the vertex set V(G).

Similarly, the size of the graph, denoted by |E(G)|, is defined as the cardinality of the edge set E(G).
\_ J

([ Definition 1.2.2 » Neighbourhood and Degree }

For a given graph G and vertex v, the neighbourhood of vertex v, denoted by N(v), is defined as the
set of vertices adjacent to v: N(v) = {x € V(G) | {v,x} € E(G)}. The degree of vertex v, denoted

as deg(v), is defined as the cardinality of its neighbourhood: deg(v) = |N(v)]|.
\_ J

We introduce two more notations:
¢ The maximum degree of a graph G is denoted by A(G): A(G) = max{deg(v) | v € V(G)}.
¢ The minimum degree of a graph G is denoted by §(G): 6(G) = min{deg(v) | v € V(G)}.

Now, let’s state one of the famous and basic theorems.

Theorem 1.2.1

In a graph G, the sum of the degrees of vertices is equal to twice the number of edges:

2IE(G)|= ), deg(v)
veV(G)
Proof. Easy exercise. Try to double count the set {(v,e) € V X E | v € e}. O

We will now introduce two very useful concepts: vertex deletion and edge deletion.
The notation G — v denotes the graph obtained by excluding vertex v and all its incident edges
from G, expressing the concept of vertex deletion. This can be formally described as

G-v=(V(C)\{v},E(G)\ {e: v e c})

Similarly, G — e signifies the graph resulting from the removal of a specific edge ¢ in G, while
keeping its original end vertices intact. In other words,

G—e=(V(G),E(G)\{e})

Additionally, the notation G/e denotes the graph obtained by merging the end vertices v; and v;
of edge e = {v1,v2} into a single vertex v. In the graph G, every edge incident on either vy or vy is
now incident on v in the updated notation G/e, which can be formally expressed as

G/e= (V(G),E(G))/ ~

where ~, denotes the equivalence relation vy ~, v; .

We now define the concepts of connectedness and cut sets.
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([ Definition 1.2.3 » Connected Graph }

A graph G is connected if, for every pair of vertices u,v in G, there exists a sequence of edges
e1,..., e such that u € ey, v € ey, and the intersection size |e; Ne; 1| = 1 for all i.
\_

([ Definition 1.2.4 » Connected Component }

Let G = (V,E) be a graph. A connected component of G is a maximal subgraph G' = (V',E’) of G,
such that:

e Every vertex in V' is connected to every other vertex in V' by a path in G'.

e There is no vertex in V. — V' that can be added to V' without violating the previous condition.

\_

([ Definition 1.2.5 » Cut Vertex }

Let G = (V,E) be a graph. A vertex v in V is a cut vertex if and only if the removal of v from G

results in an increase in the number of connected components of G.
\_

([ Definition 1.2.6 » Cut Edge or Bridge }

Let G = (V,E) be a graph. An edge e € E is a cut edge or bridge if and only if the removal of e from

G results in an increase in the number of connected components of G.
\_

([ Definition 1.2.7 » Vertex Cut Set }

Let G = (V,E) be a graph. A proper subset S C V(G) is a vertex cut set if and only if the removal

of S from G results in a disconnected graph.
\_

f[ Definition 1.2.8 » Connectivity }

Let G = (V, E) be a graph. The connectivity of G, denoted by x(G), is defined as the minimum size
of a cut set of G.

\_

Next, we go on to define a few more types of graphs.

1. Complement of a Graph: The complement of a graph G is the graph on n vertices, where all

possible vertices (x,y) ¢ E(G).

2. Line Graph of a Graph: The line graph L(G), where each edge in G is represented by a
vertex in L(G), and an edge exists between two vertices of L(G) if the corresponding edges

in G share a vertex.

3. Regular Graph: A graph whose every vertex has equal degree.

4. Bipartite Graph: A graph whose vertices can be divided into two partite sets X and Y, such

that no two vertices in a partite set are adjacent to each other.

5. Subgraph: A graph H is called the subgraph of a graph G if V(H) C V(G) and E(H) C E(G).
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([ Definition 1.2.9 » Graph Homomorphism and Isomorphism }

Suppose G and H are two graphs. A function ¢ : V(G) — V(H) is a graph homomorphism
if {x,y} € E(G) implies {¢(x),¢(y)} € E(H). ¢ is an isomorphism if ¢ is a bijection, and
{x,y} € E(G) ifand only if {¢(x),¢(y)} € E(H), i.e., ¢ and ¢~ are graph homomorphisms. G
and H are isomorphic (G = H) if there exists an isomorphism between G and H. An automorphism
is an isomorphism ¢ : G — G from a graph G to itself.

\_

That concludes the basic definitions we will be needing. Further on, we will introduce various
interesting ideas, and in our Random Graphs WRP, these ideas will be of essence.
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