Chapter 1 Basic Definitions

1.1 Notation and Preliminaries

Definition 1.1.1 ► Graph

A (simple) graph G = (V, E) consists of a finite vertex set V and an edge set $E \subseteq {V \choose 2}$.

Before delving deeper, let's establish definitions for various classes of graphs.

1. **Undirected Graph**: An undirected graph is characterized by edges (x, y) being equivalent to (y, x).

Figure 1.1: Undirected graph

2. Directed Graph: A directed graph or digraph G = (V, E) represents edges as ordered pairs of vertices, i.e., $E \subseteq V \times V$.

Figure 1.2: Directed graph

Figure 1.3: Multigraph

- 3. **Multigraph**: A multigraph G = (V, E) where there can be more than one edge between any given vertices, i.e., $E \subseteq {V \choose 2}$ is a multiset.
- 4. **Pseudograph**: A pseudograph G = (V, E) allows loops and multiple edges. Formally, E is a subset of pairs of distinct vertices in $V(\binom{V}{2})$ and pairs with identical elements $(\{(v, v) \mid v \in V\})$, i.e., $E \subseteq \binom{V}{2} \cup \{(v, v) \mid v \in V\}$.

Figure 1.4: Pseudograph

5. **Hypergraph**: A hypergraph G = (V, E) has edges that can be any subset of vertices, expressed as $E \subseteq 2^V$.

Figure 1.5: Hypergraph ([5], {{1,2,3,4}, {1,2,5}, {3,5}})

6. Infinite Graph: A graph where the set *V* or *E* is infinite.

1.2 Important Terminologies

Definition 1.2.1 ► Order and Size

The order of a graph, denoted by |V(G)|, is defined as the cardinality of the vertex set V(G). Similarly, the size of the graph, denoted by |E(G)|, is defined as the cardinality of the edge set E(G).

Definition 1.2.2 ► Neighbourhood and Degree

For a given graph G and vertex v, the **neighbourhood** of vertex v, denoted by N(v), is defined as the set of vertices adjacent to v: $N(v) = \{x \in V(G) \mid \{v, x\} \in E(G)\}$. The **degree** of vertex v, denoted as deg(v), is defined as the cardinality of its neighbourhood: deg(v) = |N(v)|.

We introduce two more notations:

- The maximum degree of a graph *G* is denoted by $\Delta(G)$: $\Delta(G) = \max\{\deg(v) \mid v \in V(G)\}$.
- The minimum degree of a graph *G* is denoted by $\delta(G)$: $\delta(G) = \min\{\deg(v) \mid v \in V(G)\}$.

Now, let's state one of the famous and basic theorems.

Theorem 1.2.1

In a graph *G*, the sum of the degrees of vertices is equal to twice the number of edges:

$$2|E(G)| = \sum_{v \in V(G)} \deg(v)$$

Proof. Easy exercise. Try to double count the set $\{(v, e) \in V \times E \mid v \in e\}$.

We will now introduce two very useful concepts: *vertex deletion* and *edge deletion*. The notation G - v denotes the graph obtained by excluding vertex v and all its incident edges from G, expressing the concept of vertex deletion. This can be formally described as

$$G - v = (V(G) \setminus \{v\}, E(G) \setminus \{e : v \in e\})$$

Similarly, G - e signifies the graph resulting from the removal of a specific edge e in G, while keeping its original end vertices intact. In other words,

$$G - e = (V(G), E(G) \setminus \{e\})$$

Additionally, the notation G/e denotes the graph obtained by merging the end vertices v_1 and v_2 of edge $e = \{v_1, v_2\}$ into a single vertex v. In the graph G, every edge incident on either v_1 or v_2 is now incident on v in the updated notation G/e, which can be formally expressed as

$$G/e = (V(G), E(G)) / \sim_e$$

where \sim_e denotes the equivalence relation $v_1 \sim_e v_2$.

We now define the concepts of connectedness and cut sets.

Definition 1.2.3 ► Connected Graph

A graph G is connected if, for every pair of vertices u, v in G, there exists a sequence of edges e_1, \ldots, e_k such that $u \in e_1, v \in e_k$, and the intersection size $|e_i \cap e_{i+1}| = 1$ for all *i*.

Definition 1.2.4 ► Connected Component

Let G = (V, E) be a graph. A connected component of G is a maximal subgraph G' = (V', E') of G, such that:

- Every vertex in V' is connected to every other vertex in V' by a path in G'.
- There is no vertex in V V' that can be added to V' without violating the previous condition.

Definition 1.2.5 ► Cut Vertex

Let G = (V, E) be a graph. A vertex v in V is a cut vertex if and only if the removal of v from G results in an increase in the number of connected components of G.

Definition 1.2.6 ► Cut Edge or Bridge

Let G = (V, E) be a graph. An edge $e \in E$ is a cut edge or bridge if and only if the removal of e from *G* results in an increase in the number of connected components of *G*.

Definition 1.2.7 ► Vertex Cut Set

Let G = (V, E) be a graph. A proper subset $S \subset V(G)$ is a vertex cut set if and only if the removal of *S* from *G* results in a disconnected graph.

Definition 1.2.8 ► Connectivity

Let G = (V, E) be a graph. The connectivity of G, denoted by $\kappa(G)$, is defined as the minimum size of a cut set of G.

Next, we go on to define a few more types of graphs.

- 1. **Complement of a Graph**: The complement of a graph *G* is the graph on *n* vertices, where all possible vertices $(x, y) \notin E(G)$.
- 2. Line Graph of a Graph: The line graph L(G), where each edge in *G* is represented by a vertex in L(G), and an edge exists between two vertices of L(G) if the corresponding edges in *G* share a vertex.
- 3. Regular Graph: A graph whose every vertex has equal degree.
- 4. **Bipartite Graph**: A graph whose vertices can be divided into two partite sets *X* and *Y*, such that no two vertices in a partite set are adjacent to each other.
- 5. **Subgraph**: A graph *H* is called the subgraph of a graph *G* if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

1.2. IMPORTANT TERMINOLOGIES

Definition 1.2.9 ► Graph Homomorphism and Isomorphism

Suppose G and H are two graphs. A function $\phi : V(G) \to V(H)$ is a graph homomorphism if $\{x, y\} \in E(G)$ implies $\{\phi(x), \phi(y)\} \in E(H)$. ϕ is an isomorphism if ϕ is a bijection, and $\{x, y\} \in E(G)$ if and only if $\{\phi(x), \phi(y)\} \in E(H)$, i.e., ϕ and ϕ^{-1} are graph homomorphisms. G and H are isomorphic ($G \cong H$) if there exists an isomorphism between G and H. An automorphism is an isomorphism $\phi : G \to G$ from a graph G to itself.

That concludes the basic definitions we will be needing. Further on, we will introduce various interesting ideas, and in our Random Graphs WRP, these ideas will be of essence.