
Chapter 1

Paths, Trails, Cycles, and Circuits

We start off this chapter by including some definitions. It would help you all to recall the definitions
of paths, walks, and trails.

Definition 3.0.1 ▶ Cycle

A path which ends in the starting vertex is called a closed path or cycle.

Definition 3.0.2 ▶ Circuit

A trail which ends in the starting vertex is called a closed trail or circuit.

Definition 3.0.3 ▶ Eulerin trail

A trail in a graph G that includes every edge of G is called an Eulerian trail.

Definition 3.0.4 ▶ Eulerian circuit

A circuit in a graph G that includes every edge of G is called an Eulerian circuit.

Definition 3.0.5 ▶ Eulerian graph

A graph is said to be Eulerian if it has an Eulerian circuit.

Definition 3.0.6 ▶ Hamiltonian path

If a path P spans the vertices of G, then it is called a Hamiltonian path.

Definition 3.0.7 ▶ Hamiltonian cycle

If a cycle C spans the evrtices of G, then it is called a Hamiltonian cycle.

Definition 3.0.8 ▶ Hamiltonian graph

A graph is said to be Hamiltonian if it has a Hamiltonian cycle.
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Theorem 3.0.1

For a connected graph G, TFAE (the following are equivalent) :

(i) G is Eulerian.

(ii) Every vertex of G has even degree.

(iii) The edges of G can be partitioned into edge-disjoint cycles.

The proof of this theorem is intuitive and are left as an exercise for the reader. It will be nice if you
try to prove part (iii) and you can send your proofs on the group.

Corollary 3.0.1. The connected graph G contains an Eulerian trail iff there are at most 2 vertices of odd
degree.

Now, we state two very important theorems that will be used both in our Random Graphs WRP as
well as in many graph theoretic problems that you may encounter in future.

Theorem 3.0.2 (Dirac’s theorem)

Let, G be a graph of order n ≥ 3. If δ(G) ≥ n
2 , then G is Hamiltonian.

Proof. Suppose G is a counterexample to the theorem and G be such a graph with maximal number
of edges i.e., addition of an edge to G creates a cycle. Let v ≁ w and hence G ∪ (v, w) will
contain a Hamilton cycle v = v1v2 . . . vn = w, v. Thus v1v2 . . . vn is a simple path. Define sets
Sv := {i : v ∼ vi+1} and Sw := {i : w ∼ vi}. Since δ(G) ≥ n/2, |Sv|, |Sw| ≥ n/2 and further
Sv, Sw ⊂ {1, . . . , n − 1}. Hence Sv ∩ Sw ̸= ∅ and assume that i0 ∈ Sv ∩ Sw. Then v = v1v2 . . . vi0 w =
vnvn−1 . . . vi0+1v1 = v is a Hamiltonian circuit in G, contradicting our assumption.

Theorem 3.0.3 (Ore’s theorem)

Let, G be a graph of order n ≥ 3. If deg(x) + deg(y) ≥ n, then ∀ pairs of non-adjacent vertices x, y,
then G is Hamiltonian.

The proof of this theorem is left as an exercise to the reader. You can make use of Dirac’s theorem
as well as the approach used in it’s proof to prove Ore’s theorem. We encourage you to share your
proof in the group.
Next, we define some very useful terminologies that will be of essence.

Definition 3.0.9 ▶ Independent sets and covers

An independent set of vertices is S ⊂ V such that no two vertices in S are adjacent. An
independent set of edges is E′ ⊂ E such that no two edges in E′ share a common end vertex. A
subset of vertices S ⊂ V is a vertex cover if every edge in G is incident to at least one vertex in S.
An edge cover is a set of edges E′ ⊂ E such that every vertex is contained in at least one edge in E′.
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Definition 3.0.10 ▶ Independence number and cover number

α(G) = max{|S| : S independent vertex set}.

α′(G) = max{|M| : M independent edge set}.

β(G) = min{|S| : S vertex cover}.

β′(G) = min{|E′| : E′ edge cover}.

Now we will state a very interesting theorem which relates the Hamiltonicity of a graph with it’s
connectivity and independence number.

Theorem 3.0.4

Let, G be a connected graph of order n ≥ 3 with vertex connectivity κ(G) and independence number
α(G). If κ(G) ≥ α(G), then G is Hamiltonian.

You can skip the proof of this theorem if you want, as the proof would not be a crucial part of our
WRP.

Proof. If G is as described, then κ(G) ≥ 2, as if κ(G) = 1, then α(G) = 1 and thus G is either K1 or
K2, contradicting the fact that n ≥ 3.
Let C be a longest cycle in G. Suppose that C is not a Hamiltonian cycle, and let v be a vertex of G
that is not on C. Let, H be the connected component of G − V(C) containing vertex v.
V(C) = {c1, c2, . . . , cr}
The vertex of H adjacent to ci is denoted by hi. The vertex which is the immediate clockwise
successor of ci is denoted by di.
Following these, we can make some observations:

(i) It must be that r ≥ κ(G). If the vertices V(C) were removed from G, then H would be
disconnected from the rest of the graph. Since κ(G) is the size of the smallest cut set, it
follows that r ≥ κ(G) ≥ 2.

(ii) No two of the vertices in the set V(C) are consecutive vertices on C. To see this, suppose
that there is some i such that ci and ci+1 are consecutive vertices on C. Let, P be a path from
hi to hi+1 in H, and consider the cycle formed by replacing the edge cici+1 on C with the
path ci, [hi, hi+1]P, ci+1. This cycle is longer than our maximal cycle C, a contradiction. This
observation implies that the sets c1, c2, . . . , cr and d1, d2, . . . , dr are disjoint.

(iii) For each i(1 ≤ i ≤ r), di is not adjacent to v. To see this, suppose div ∈ E(G) for some i, and
let Q be a path from hi to v in H. In this case, the cycle formed by replacing the edge cidi on
C with the path ci, [hi, v]Q, di is longer than C, again a contradiction.

Now, let S = v, d1, d2, ..., dr. The first observation above implies that |S| ≥ κ(G) + 1 > α(G).
This means that some pair of vertices in S must be adjacent. Our third observation implies
that di must be adjacent to dj for some i < j. If R is a path from hi to hj in H, then the cycle
ci, [hi, hj]R, [cj, di]C− , [dj, ci]C+ is a longer cycle than C. Our assumption that C was not a Hamiltonian
cycle has led to a contradiction and thus, C is indeed a Hamiltonian cycle.
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Next, we introduce the idea of forbidden subgraphs. The absence of any particular forbidden
subgraph H in a graph G, gives G some “nice” properties. This concept of forbidden subgraphs
will be very crucial in understanding and checking for planarity of graphs. Here, we will relate
forbidden subgraphs to Hamiltonicity. For the next two theorems, you may skip the proofs if you
wish.

Theorem 3.0.5

If G is a 2-connected, {K1,3, Z1}-free graph, then G is Hamiltonian

Proof. Suppose G is 2-connected and K1,3, Z1-free, and let C be a longest cycle in G. If C is not a
Hamiltonian cycle, then there must exist a vertex v, not on C, which is adjacent to a vertex, say w,
on C. Let a and b be the immediate predecessor and successor of w on C.
A longer cycle would exist if either a or b were adjacent to v, and so it must be that both a and
b are nonadjacent to v. Now, if a is not adjacent to b, then the subgraph induced by the vertices
w, v, a, b is K1,3, and we know that G is K1,3-free. So it must be that ab ∈ E(G). But if this is the
case, then the subgraph induced by w, v, a, b is Z1, a contradiction. Therefore, it must be that C is a
Hamiltonian cycle.

Theorem 3.0.6

Let, G be a {K1,3, N}-free graph. Then:

1. If G is connected, then G is traceable.

2. If G is 2-connected, then G is Hamiltonian.

The proof of the second part follows directly from theorem 1. The proof of the first part is also
simple and the only obstacle that may arise is understanding what we mean by traceable. A
traceable graph refers to a graph that has a Hamiltonian path.

Figure 3.1: This graph is represented by N

Theorem 3.0.7 (Mantel’s theorem, 1907)

If G is a graph on n vertices with no triangle then |E| ≤ ⌊n2/4⌋. Equivalently, if |E| > n2/4, then
g(G) = 3.

Proof. Let us divide the problem into 2 cases, n = 2k and n = 2k + 1.
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Case 1: For n=2k, ⌊n2/4⌋ = k2.
The theorem holds true for k = 2 or n = 4. Let, the theorem be true for all k ≤ q.
Now, we consider k = q + 1 or n = 2q + 2. Let, the vertex set be V and we consider 2 vertices
x, y ∈ V, such that, x ∼ y. If among the vertices V \ {x, y}, we have more than q2 edges
then a triangle exists and we are done. Let, us assume that there exists no triangle among
these vertices V \ {x, y}, then there are atmost q2 edges among these vertices. Now, we have
(q + 1)2 + 1 − q2 − 1 = 2q + 1 edges more to be put to use. These edges are drawn from
either of x or y to the vertices V \ {x, y}. Thus, there exists atleast one vertex v ∈ V \ {x, y},
such that, x ∼ v and y ∼ v and thus we get our triangle.

Case 2: For n=2k+1, ⌊n2/4⌋ = k2 + k.
The theorem holds true for k = 1 or n = 3. Let, the theorem be true for all k ≤ q.
Now, we consider k = q + 1 or n = 2q + 3. Let, the vertex set be V and we consider 2 vertices
x, y ∈ V, such that, x ∼ y. If among the vertices V \ {x, y}, we have more than q2 + q edges
then a triangle exists and we are done. Let, us assume that there exists no triangle among
these vertices V \ {x, y}, then there are atmost q2 + q edges among these vertices. Now, we
have at least (q + 1)2 + (q + 1) + 1 − q2 − q − 1 = 2q + 2 edges more to be put to use. These
edges are drawn from either of x or y to the vertices V \ {x, y}. Thus, there exists atleast one
vertex v ∈ V \ {x, y}, such that, x ∼ v and y ∼ v and thus we get our triangle.

Theorem 3.0.8 (Turan, 1941)

If a simple graph on n vertices has no complete subgraph Kp, then |E| ≤ T(n, k) := (k−2)n2−r(k−1−r)
2(k−1)

where r ≡ n( mod k − 1).

Proof. Let t be such that n = t(k − 1) + r. We will prove by induction on t. If t = 0, then
n = r, T(n, k) = n(n − 1)/2 and the theorem trivially holds as n ≤ k − 1. Now, consider a
graph G on n vertices with no Kk subgraph (i.e., a subgraph isomorphic to Kk) and let G have
the maximum number of edges subject to these constraints. Hence, G contains a subgraph H
isomorphic to Kk−1. If not, one can add an edge to G without creating a Kk subgraph and so
contradicting its maximality. The vertices V − H are joined to at most k − 2 vertices in H. Since
|V − H| = n − k + 1 = (t − 1)(k − 1) + r and the induced subgraph ⟨V − H⟩ also does not contain
a Kk subgraph, by induction hypothesis, |E(⟨V − H⟩)| ≤ T(n − k + 1, k). Thus, we have that

|E(G)| ≤ T(n − k + 1, k) + (n − k + 1)(k − 2) +
(

k − 1
2

)
and one can easily verify that the RHS is equal to T(n, k).
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