
Chapter 1

Matchings

5.1 Matchings

Definition 5.1.1 ▶ Matching

A subset M of edges is said to be matching if no two edges are incident on any vertex or equivalently,
every vertex is contained in at most one edge. A complete matching M on a subset S ⊂ V is a
matching that contains all the vertices in S. A perfect matching is a complete matching on G.

Alternatively one can consider a matching of a graph M as a subgraph of G such that dM(v) = 1
for all v ∈ V(M). A matching is perfect if M is spanning. A vertex v is said to be saturated if v ∈ M
and else unsaturated. For a subset S ⊂ V, N(S) =

⋃
v∈S N(v).

Theorem 5.1.1 (Hall’s marriage theorem)

Let G be a bi-partite graph with the two vertex sets being V1, V2. Then there exists a complete
matching on V1 iff |N(S)| ≥ |S| for all S ⊂ V1.

Proof. Let |V1| = k and our proof will be by induction on k. If k = 1, the proof is trivial. Let
G = V1 ∪ V2 be such that the result holds for any graph with strictly smaller V1.
Suppose that |N(S)| ≥ |S| + 1 for all S ⊊ V1. Then choose (v, w) ∈ E ∩ V1 × V2 and consider
the induced subgraph G′ := ⟨V − {v, w}⟩. Since we have removed only w from V2 and that
|N(S)| ≥ |S|+ 1 for all S ⊊ V1, we get that |N(S′)| ≥ |S′| for all S′ ⊂ V1 − {v}. Thus there is a
complete matching M on V1 − {v} in G′ by induction hypothesis and M ∪ (v, w) is a complete
matching on V1 in G as desired.
If the above is not true i.e., there exists A ⊂ V1 such that N(A) = B and |A| = |B|. Then, by
induction hypothesis, there is a complete matching M0 on A in the induced subgraph ⟨A ∪ B⟩.
Trivially, Hall’s condition holds i.e., for all S ⊂ A, |N(S) ∩ B| = |N(S)| ≥ |S|. Let G′ :=
G −∠A ∪ B⟩. Let S ⊂ V1 − A. Suppose if |N′(S)| < |S| where N′(S) = N(S) ∩ (V2 − B). Then, we
have that N(S ∪ A) = N′(S)∪ B and hence |N(S ∪ A)| ≤ |N′(S)|+ |B| < |S|+ |A|, a contradiction.
Hence, G′ also satisfies Hall’s condition and again by induction hypothesis G′ has a complete
matching M′ on V1 − A. Thus, we have a complete matching M := M0 ∪ M′ on V1 in G.

Proposition 5.1.1. Let d ≥ 1. Let G be a bipartite graph on V1 ⊔ V2 such that |N(S)| ≥ |S| − d for all
S ⊂ V1. Then G has a matching with at least |V1| − d independent edges.

1



2 CHAPTER 1. MATCHINGS

Proof. Set V′
2 := V2 ∪ [d]. Define G′ with vertex set as V1 ⊔ V′

2 and edge set as E(G) ∪ (V1 × [d]).
Then, it is easy to see that Hall’s condition is true on G′ and hence there is a complete matching
M of V1 in G′. Now, if we remove the edes in M incident on [d], we get a matching with at least
|V1| − d edges as required.

Definition 5.1.2 ▶ Factor of a graph

Given a graph G, a factor of G is a spanning subgraph. Equivalently, a subgraph H is said to be a
factor (of G) if V(H) = V(G). An r-factor is a factor that is r-regular.

Thus, 1-factors are nothing but perfect matchings.

Theorem 5.1.2 (Petersen, 1891)

Every regular graph of positive even degree has a 2-factor.

Proof. Easy exercise.

A matching M is said to be maximal if there is no matching M′ such that M ⊊ M′. A matching M
is said to be a maximum matching if α′(G) = |M|.
Now recall the definitions of α(G), β(G), α′(G), β′(G). If M is a maximum matching, then to cover
each edge we need distinct vertices and hence the vertex cover should have size at least |M|.
Furthermore, given a maximum matching M, V(M) gives a vertex cover. For if there is an edge e
not covered by V(M) then M + e is a larger matching than M. These observations yield the first
inequality below.

α′(G) ≤ β(G) ≤ 2α′(G) and α(G) ≤ β′(G)

As for the second inequality, observe that to cover vertices of an independent set, we need distinct
edges.

Lemma 5.1.2. Let G be a graph. S ⊂ V is an independent set iff Sc is a vertex cover. As a corollary, we get
α(G) + β(G) = n = |V|.

Theorem 5.1.3 (Konig-Egervary theorem)

For a bi-partite graph, α′(G) = β(G).

Proof. We will show that for a minimum vertex cover Q, there exists a matching of size at least |Q|.
Partition Q into A := Q ∩V1 and B := Q ∩V2. Let H and H′ be induced subgraphs on A ⊔ (V2 − B)
and (V1 − A) ⊔ B respectively. If we show that there is a complete matching on A in H and a
complete matching on B in H′, we have a matching of size at least |A|+ |B| (= |Q|) in G. Also,
note that it suffices to show that there is a complete matching on A in H because we can reverse
the roles of A and B apply the same argument to B as well.
Since A ∪ B is a vertex cover, there cannot be an edge between V1 − A and V2 − B. Suppose for
some S ⊂ A, we have that |NH(S)| < |S|. Since NH(S) covers all edges from S that are not incident
on B, Q′ := Q − S + NH(S) is also a vertex cover. By choice of S, Q′ is a smaller vertex cover than
Q contradicting that Q is minimum. Hence, we have that Hall’s condition holds true for A in H.
And by the arguments in the previous paragraph, the proof is complete.
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Theorem 5.1.4 (Gallai, 1959)

If G is a graph without isolated vertices, then α′(G) + β′(G) = n = |V|.

Proof. Suppose M is a maximum matching. Then S = V − V(M) is also an independent set. If
there are edges between vertices of S, then such edges can be added to M and one can obtain a
larger matching. Hence there are no edges between vertices of S and hence it is a independent
set. Construct a edge cover as follows : Add all edges in M to Q and for each v ∈ S, add one of
its adjacent edges to Q. Since there are no isolated vertices, v has atleast one adjacent edge. Thus
|Q| = |M|+ |S| and since V(M) ⊔ S = V, we can derive that

α′(G) + β′(G) ≤ |M|+ |Q| = 2|M|+ |S| = n

Let Q be a minimum edge cover. Then Q cannot contain a path of length more than 2. Else, by
removing the middle edge in a path of length at least 3, we can obtain a smaller edge cover. By the
previous exercise, Q is a graph consisting of star components. If C1, . . . , Ck are the components
of Q, then V(C1) ∪ . . . ∪ V(Ck) = V and E(C1) ∪ . . . ∪ E(Ck) = Q. Now choose a matching
M = {e1, . . . , ek} by selecting one edge from every component C1, . . . , Ck. Since Ci’s are disjoint, M
is a matching. Thus, using the fact that each Q is a forest with k components, we can derive that

α′(G) + β′(G) ≥ |M|+ |Q| = k + |E(Q)| = n

As a corollary, we get König’s result : if G is bi-partite graph without isolated vertices, α(G) = β′(G).

5.2 Augmenting path

Definition 5.2.1 ▶ Augmenting path

Given a matching M, a M-alternating path P is a path such that its edges alternate between M and
Mc. A M-augmenting path is a M-alternating path whose end-vertices do not belong to M.

Theorem 5.2.1 (Berge, 1957)

A matching M in a graph is a maximum matching in G iff G has no M-augmenting path.

Proof. Suppose there is an M-augmenting path P. Let P = v0v1 . . . vk. Since P is M-augmenting,
(v0, v1), (v2, v3), . . . , (vk−1, vk) /∈ M and (v1, v2), (v3, v4), . . . , (vk−2, vk−1) ∈ M. Now, observe that
M′ = M − P ∪ {(v0, v1), (v2, v3), . . . , (vk−1, vk)} is a larger matching than M. Hence if M is a
maximum matching, there is no M-augmenting path. Suppose M′ is a larger matching than M. We
shall construct an M-augmenting path and prove the theorem by contraposition. Let F = M△M′.
We know by the above exercise that the components of F are paths or even cycles. Since |M′| > |M|,
there must be a component of F such that M′ has more edges in that component than M′. If a
component in F is an even cycle, it consists of same number of edges from M and M′. Thus, the
component for which M′ has more edges must be a path, say P = v0 . . . , vk. Since P ⊂ F, we have



4 CHAPTER 1. MATCHINGS

Figure 5.1: Red is a maximal matching and Blue is a maximum matching

that P has to be an M-alternating path i.e., (v0, v1) ∈ M′, (v1, v2) ∈ M, . . . or (v0, v1) ∈ M, (v1, v2) ∈
M′, . . .. Since m′ := |M′ ∩ P| > |M ∩ P| = m and that P is an M-alternating path, we derive that
m′ − m = 1 and k = 2m + 1. Further, this implies that (v0, v1), (v2, v3), . . . , (vk−1, vk) ∈ M′ and
(v1, v2), (v3, v4), . . . , (vk−2, vk−1) ∈ M i.e., P is an M-alternating path. If v0 ∈ V(M) then there
exists (w, v0) ∈ M for some w ̸= v1. Also (w, v0) ∈ M \ M′ ⊂ F contradicting the assumption that
P is not a component. So v0 /∈ M and similarly vk /∈ M. Thus, we have that P is an M-augmenting
path as needed.

Recall definition of graph factors. For a graph G, let o(G) denote the number of odd components
of G. The next theorem that we will be stating has a long proof and you may skip it if you want.

Theorem 5.2.2 (Tutte’s 1-factor theorem)

A graph has a 1-factor iff o(G − S) ≤ |S| for all S ⊂ V.

Proof. To Be Added. . .

We end this chapter by stating Menger’s theorem. However, before diving into the theorem we
need to look at some definitions.

Let G be a connected graph, and let u and v be vertices of G. If S is a subset of vertices that does
not include u or v, and if the graph G − S has u and v in different connected components, then we
say that S is a u, v-separating set.

Theorem 5.2.3

Let G be a graph and let u and v be vertices of G. The maximum number of internally disjoint paths
from u to v equals the minimum number of vertices in a u, v-separating set.

You can skip the proof of this theorem if you wish.

Proof. To Be Added. . .
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