
Chapter 1

Spectral Graph Theory

This chapter employs linear algebra tools to systematically investigate graph properties, thereby
facilitating a more lucid comprehension and expeditious validation of proofs for both antecedent
and contemporary results.

We start by clarifying our convention. For a graph G = (V, E) on n vertices and m edges, we
denote the vertex set V(G) as [n] = {1, . . . , n} and the edge set E(G) as E = {e1, . . . , em}. We will
also assume that the vertices of G are ordered in some way.

8.1 Basic facts from Linear Algebra

To be added...

8.2 Incidence Matrix

Definition 8.2.1

Let G be a graph with n vertices and m edges, we first assign an orientation to the edges and consider
them as E(G) =

{
ej =

(
e+j , e−j

)
| j = 1, . . . , m

}
. Here, e+j denotes the vertex where the edge ej is

outgoing and e−j denotes the vertex where the same is incoming. Then the incidence matrix of G is
the n × m matrix Q =

(
(qij)

)
m×n defined as follows:

qij =


1 if vi = e+j
−1 if vi = e−j
0 otherwise
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Figure 8.1: Graph G1 = ([5], {e1, . . . , e6})

Example 8.2.1

Consider the graph G1 having the incidence matrix Q(G1) as follows:

Q(G1) =


1 0 0 0 −1 1

−1 1 0 0 0 0
0 −1 1 0 0 −1
0 0 −1 1 0 0
0 0 0 −1 1 0


Now, we list some basic properties of the incidence matrix.

Theorem 8.2.1

Consider a graph G with n vertices and m edges. For two incidence matrices Q1 and Q2 of G, there
exists a diagonal matrix D of order m with diagonal entries ±1 such that Q1 = Q2D.

Proof. Considering the digraphs corresponding to Q1 and Q2, and noting their shared underlying
graph with identical vertices and edges, we relabel the edges of Q2 to align with Q1. Define the
diagonal matrix D such that Dii = 1 if the ith edge has the same orientation in both Q1 and Q2,
and Dii = −1 if their orientations are opposite. This establishes Q1 = Q2D, which completes the
proof.

So, it doesn’t matter which orientation we choose for the edges of a graph, because every incidence
matrix is the same up to the right multiplication of some ±1 diagonal matrix.

Next we investigate the rank of the incidence matrix. For a graph G, note that the column sums
of Q(G) are zero due to each edge being incident to exactly two vertices, and each vertex being
incident to exactly two edges.

Theorem 8.2.2 (Rank)

If G is a connected graph on n vertices, then rank Q(G) = n − 1. More generally, if G has k
components, then rank Q(G) = n − k.
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Proof. For a connected graph G, let x be in the left null space of Q := Q(G), i.e., xTQ = 0. Since G is
connected, all components of x are equal. Thus, the left null space of Q is at most one-dimensional,
making the rank of Q at least n − 1. Also, as the rows of Q are linearly dependent, rank Q ≤ n − 1,
implying rank Q = n − 1.
If G has k connected components, after relabeling the vertices (if necessary), we can express Q(G)
as a block diagonal matrix,

Q(G) =

Q(G1)
. . .

Q(Gk)


Since each Gi is connected, rank Q(Gi) = ni − 1, where ni is the number of vertices in Gi. Thus,
rank Q = rank Q1 + · · ·+ rank Qk = n − k.

Theorem 8.2.3

Let G be a graph on n vertices. Columns j1, . . . , jk of Q(G) are linearly independent if and only if
the corresponding edges of G induce an acyclic subgraph.

Proof. Consider edges j1, . . . , jk and suppose there is a cycle in the induced subgraph. Without loss
of generality, suppose the columns j1, . . . , jp form a cycle. After relabeling vertices if needed, the

submatrix of Q(G) formed by j1, . . . , jp is
[

B
0

]
, where B is the p × p incidence matrix of the cycle.

Since B is singular (having column sums zero), j1, . . . , jp are dependent, which proves the ”only if”
part.
Conversely, if j1, . . . , jk induce an acyclic graph (a forest), and the forest has q components, then
k = n − q, which is the rank of the submatrix formed by j1, . . . , jk (by Theorem 8.2.2). Therefore,
the columns j1, . . . , jk are independent.

Now we look at the square submatrices of the incidence matrix.

Definition 8.2.2 ▶ Totally unimodular matrix

A matrix is called totally unimodular if every square submatrix has determinant 0, 1, or −1.

It can be easily proved by induction on the order of the submatrix that Q(G) is totally unimodular
which is our next result.

Theorem 8.2.4

Let G be a graph with incidence matrix Q(G). Then Q(G) is totally unimodular.

Proof. We prove the statement that any k × k submatrix of Q(G) has determinant 0 or ±1 by
induction on k. For k = 1, the statement is evident since each entry of Q(G) is either 0 or ±1.
Assuming the statement holds for k − 1, consider a k × k submatrix B of Q(G).
If each column of B has a 1 and k − 1 zeros, or if B has a zero column, then det B = 0. If B has a
column with only one nonzero entry, which must be ±1, expanding the determinant along that
column and using the induction assumption implies that det B must be 0 or ±1.
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Theorem 8.2.5

Let G be a tree on n vertices. Then any submatrix of Q(G) of order n − 1 is nonsingular. Moreover,
their determinant have the same absolute value.

Proof. Consider any n − 1 rows of Q(G), say 1, 2, . . . , n − 1, and let B be the submatrix formed by
these rows. Let x be a row vector of n − 1 components in the row null space of B. As in the proof
of Theorem 8.2.2, xi = 0 whenever i ∼ n, and the connectedness of G implies x is the zero vector.
Thus, the rank of B is n − 1, making B nonsingular.

Consider,

det B = det


v1
v2
...

vn−1

 = det


−∑n

j=2 vj

v2
...

vn−1

 = det


−vn
v2
...

vn−1

 = det


v2
...

vn−1
vn


It’s your job to convince yourself, no matter which n − 1 rows we choose, the determinant of the
corresponding submatrix remains the same (upto sign).

8.3 Adjacency Matrix

Definition 8.3.1

For a graph G with verices V(G) = [n] and edges E(G) = {e1, . . . , em}, the adjacency matrix of
G is the n × n matrix A = (aij) defined as follows:

aij =

{
1 if {i, j} ∈ E(G)

0 otherwise
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Figure 8.2: Graph G2
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Example 8.3.1

Consider the graph G2 as undirected version of G1. It has the adjacency matrix A(G2) as
follows:

A(G2) =


0 1 1 0 1
1 0 1 0 0
1 1 0 1 0
0 0 1 0 1
1 0 0 1 0



Theorem 8.3.1

Let G be a connected graph with vertices [n] and let A be the adjacency matrix of G. The (i, j)th entry
ak

ij of Ak counts the number of k-length walks with starting and end vertices i and j respectively.

Proof. By induction on k, the result is evident for k = 1. Assuming it holds for k = m, consider
Am+1 = Am A. By induction hypothesis, (i, j)-th entry of Am counts walks of length m between
vertices i and j. Now, the number of walks of length m + 1 between i and j equals the walks of
length m from i to each vertex k adjacent to j. This is expressed as

∑
k∼j

am
ik =

n

∑
k=1

am
ik akj = am+1

ij

which is precisely the (i, j)th entry of Am+1 = Am A. Hence, the result follows.

Theorem 8.3.2

Let G be a connected graph with vertices [n] and let A be the adjacency matrix of G. If i, j are vertices
of G with d(i, j) = m, then the matrices I, A, . . . , Am are linearly independent.

Proof. We may assume i ̸= j. There is no (ij)-path of length less than m. Thus, the (i, j)-element of
I, A, . . . , Am−1 is zero, whereas the (i, j)-element of Am is nonzero. Hence, the result follows.

Eigenalues of some graphs

Complete grpah, Kn.
{

n − 1,−1, . . . ,−1︸ ︷︷ ︸
n−1

}
Since every vertex of Kn is adjacent to every other vertex, the adjacency matrix consists of
all ones except the diagonal entries, which are zero. Thus A(Kn) = Jn − In, where Jn is the
matrix of all ones and In is the identity matrix of order n.
Recall that Pn = Jn

n is the projection matrix onto the subspace spanned by the all ones vector.
And note that the identity matrix In can be decomposed as the direct sum of Pn and P⊥

n ,
which is the projection matrix of it’s complement subspace, i.e. In = Pn + P⊥

n . Thus

A(Kn) = Jn − In
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= nPn − (Pn + P⊥
n )

= (n − 1)Pn + (−1)P⊥
n

which is obviously the spectral decomposition of A(Kn). So the eigenvalues of A(Kn) are
n − 1 with multiplicity rank Pn = 1 and −1 with multiplicity n − rank Pn = n − 1.

Complete Bipartite grpah, Kp,q.
{√

pq,−√
pq, 0, . . . , 0︸ ︷︷ ︸

p+q−2

}
.

Note that,

A(Kp,q) =

(
0 Jp,q

Jq,p 0

)
where Jp,q is the p× q matrix of all ones. Since both Jp,q and Jq,p have rank 1, rank A(Kp,q) = 2,
yielding 0 as an eigenvalue with multiplicity p + q − 2. Let λ be a non-zero eigenvalue of A

with an eigenvector v =

(
x
y

)
. Now, A(Kp,q)v = λv implies Jp,qy = λx and Jq,px = λy. So

qJpx = λ2x. Since Jp has the eigenvalue p with multiplicity 1 and 0 with multiplicity p − 1,
and λ ̸= 0, we get λ2 = pq, which gives λ = ±√

pq. So the eigenvalues of A(Kp,q) are 0
with multiplicity p + q − 2 and ±√

pq each with multiplicity 1.

Cycle graph, Cn.
{

2 cos 2πk
n | k = 1, . . . , n

}
.

Note that,
A(Cn) = Un + UT

n

where Un is the upshift matrix of order n, and UnUT
n = In = UT

n Un. Utilizing the eigenvalues
of Un, given by

{
ωk | k = 1, . . . , n

}
where ω is the nth root of unity, we obtain that the

eigenvalues of A(Cn) are
{

ωk + ωn−k | k = 1, . . . , n
}

.

Definition 8.3.2 ▶ Elementary Subgraph

Let G be a graph with V(G) = [n]. A subgraph H of G is called an spanning elementary subgraph
if each connected component of H is either an edge or a cycle.

We will denote c(H) and c1(H) as the number of components of H which are edges and cycles
respectively.



8.4. LAPLACIAN 7

Theorem 8.3.3 (Determinant)

Let G be a graph with vertices [n] and adjacency matrix A. Then

det A = ∑
H⊆G

spanning
elementary

(−1)n−c1(H)−c(H)2c(H)

8.4 Laplacian

For a graph G with n vertices and m edges, the Laplacian matrix of G is the n × m matrix L defined
as L = QQT

To be added...
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