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§1 Definitions and Notation

Nothing tricky here, just setting up some definitions and notations. I’ll try to not be
overly formal.

In combinatorics and other fields of mathematics, one technique to prove the existence
of a mathematical object is to construct it randomly and show a positive probability of
success.

Definition 1.1 (Complete Graph). A complete graph is a graph in which each pair of
graph vertices is connected by an edge. The complete graph with n graph vertices is
denoted Kn.

Figure 1: Here’s an example of K20

Remark. Some useless information –

• The Kn has n(n+1)
2 edges (a triangular number).

• The number of all distinct paths between a specific pair of vertices in Kn+2 is given
by wn+2 = n!en = ⌊en!⌋, where e refers to Euler’s constant, and

en =

n∑
k=0

1

n!
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Definition 1.2 (Ramsey’s Number). Let the Ramsey Number R(k, l) be the smallest n
such that if we color the edges of Kn (the complete graph on n vertices)red or blue, we
always have a Kk that is all red or a Kl that is all blue.

Basically, it asks – The minimum number
of people you should invite in your party so
that exactly k know each other or exactly l
don’t .

Definition 1.3 (Erdos-Renyi Random Graphs). A random graph is a graph in which
properties such as the number of graph vertices, graph edges, and connections between
them are determined in some random way. Here we only take into consideration of
Erdos-Renyi Random Graphs which takes the appearance of edges into consideration with
finite probabilities.

Definition 1.4 (Chillax). It is the most useful one , defined for being chill and relaxed .
Enjoy the beauty, even if it is ugly .

Now as we discuss about Ramsey’s Number , how do we clarify that it will be finite
always ??

§2 Building Up ...

§2.1 Motivation using Classics...

Example 2.1 (3+3=6)

Suppose there is a gathering of 6 people such that every 2 person is a mutual enemy
or mutual friend. We claim that there always exists a subset of 3 people who mutually
friends or mutually enemies.

Proof. Let x be one of the six persons. Then by pigeon-hole principle, x has (at least)
either ⌊52⌋= 3 friends or 3 enemies and assume by W.L.O.G that x has three friends
a, b and c. If a and b are mutual friends. Then {x, a, b} forms the friends-group, otherwise
if a and c are mutual friends then the same assertion holds true similiarly for b and c. If
none of the above works then the group {a, b, c} are neither mutual friends nor enemies
which is not possible.

Now checking for 5 people cases using the similiar arguments we get that we can never
form a friendship or an enemity triangle.
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Figure 2: R(3,3) > 5

Figure 3: Demonstrating R(3,3)

§2.2 Ramsey’s Theorem

Theorem 2.2 (Ramsey)

For every integers k, l there exists a R(k, l) and is finite.

Proof. So for proving that something is finite we must show that it is bounded from both
sides, We know that the lower bound is naturally set at 0 (Although, we can better this
lower boundary), what about the upper bound!!

Claim — For all r, s ≥ 2 ; R(r, s) ≤ R(r − 1, s) +R(r, s− 1)

Proof. Let us write N = R(m−1, n)+R(m,n−1) for convenience. To prove the general
upper bound, we must show that in any blue–red colouring of the edges of KN , there
must exist either a blue Km or a red Kn.
Let V and E denote the set of vertices and edges, respectively, of KN , and consider

any blue–red colouring of the edges of KN . Choose any v ∈ V , and partition the set
V \ {v} into sets

B = {x ∈ V : xv ∈ E and is coloured blue}

and
R = {x ∈ V : xv ∈ E and is coloured red}.

Then |B| + |R| = N − 1 = R(m − 1, n) +R(m,n − 1) − 1, so that |B| < R(m − 1, n)
and |R| < R(m,n − 1) is not simultaneously possible. Therefore, at least one of
|B| ≥ R(m− 1, n) and |R| ≥ R(m,n− 1) must hold.
Consider the case |B| ≥ R(m − 1, n); the parallel case |R| ≥ R(m,n − 1) can be

argued by replacing the role of blue with red. Since the subgraph KB of KN has at least
R(m− 1, n) vertices, KB must contain either a blue Km−1 or a red Kn by the definition
of Ramsey number R(m−1, n). If the first of these cases hold, then the vertex v together
with those of Km−1 forms a blue Km by construction of B. Thus, in any case, KN must
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contain either a blue Km or a red Kn. This completes the assertion that

R(m,n) ≤ R(m− 1, n) +R(m,n− 1)

for m,n ≥ 2.

HomeWork — Try to refine this upper bound for R(k, k).

§2.3 Bounds on Ramsey’s Number

Lemma 2.3. For any positive integers n and k,(
n

k

)
≤ 1

e

(en
k

)k
.

Here e ≈ 2.718 . . . is Euler’s constant.

Proof. Do
(
n
k

)
≤ nk

k! and then use calculus to prove that k! ≥ e(k/e)k. Specifically,

ln 1 + ln 2 + · · ·+ ln k ≥
∫ k

x=1
lnx dx = k ln k − k + 1

whence exponentiating works.

Algebra isn’t much fun, but at least it’s easy. Let’s get back to the combinatorics.

Theorem 2.4 (Lower Bound)

Let n and k be integers with n ≤ 2k/2 and k ≥ 3. Then it is possible to color
the edges of the complete graph on n vertices each either red or blue with the
following property: one cannot find k vertices for which the

(
k
2

)
edges among them

are monochromatic.

Remark. In the language of Ramsey numbers, prove that R(k, k) > 2k/2.

Solution. Again we just randomly color the edges and hope for the best. We use a coin
flip to determine the color of each of the

(
n
2

)
edges. Let’s call a collection of k vertices

bad if all
(
k
2

)
edges are the same color. The probability that any collection is bad is(

1

2

)(k2)−1

.

The number of collections in
(
n
k

)
, so the expected number of bad collections is

E[number of bad collections] =

(
n
k

)
2(

k
2)−1

.

We just want to show this is less than 1. You can check this fairly easily using Lemma 2.3;
in fact, we have a lot of room to spare.
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§3 Random Graphs

Example 3.1

Suppose you are again at a party and there are n people, but there is a condition in
meeting someone, you have a coin and you toss if it lands at heads both of you greet
and if it is tails you walk away and never meet with that person.

Note :- Coin Toss is independent of previous trials

A simple observation shows that it is a Binomial Random Variable Bin(n, 12) . But
why does this problem come up all of a sudden ? Chillax !!

You can clearly observe the connection beautiful connection between the 2 concepts
(Ramsey and Random Graphs).

Remark (Bits of Info). • There is also something called as adjacency matrix such that
every element aij = 1 if the vertex {i, j} are connected and 0 otherwise.

• Now suppose I just add the condition that the probability of aij = 1 is p. This is
basically what Random Graph is ... Every element occurs with some probability just
like a coin toss.

Remark (Notations). A random graph with n vertices is denoted by Gn, p.

q3 pq2 pq2 p2q

pq2 p2q p2q p3

1 2

3

Figure 4: Random graphs on three vertices and their probabilities Gn, p.

Example

If p = 1
2 , then for a Gn, 1

2

• The number of edges has the distribution Bin(
(
n
2

)
, 12) ∼ X

• The E[X] = n(n−1)
4

• The var[X] = n(n−1)
8

Remark. If you have any doubts about Small and Big O Notations please refer to this
reference.
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§4 Calling Old Guy...

Now let’s recall some Probability Stuffs ...

§4.1 Markov’s Inequality

Theorem 4.1 (Markov’s Inequality)

If X is a nonnegative random variable and a > 0

P(X ≥ a) ≤ E[X]

a

§4.2 Chebyshev’s Inequality

Theorem 4.2 (Chebyshev’s Theorem)

If X is a random variable and µ = E[X] and σ2 = E[X2]− E[X]2, then for all λ we
have

P(|X − µ| ≥ λσ) ≤ 1

λ2

Lemma. For any non-negative random variable X ,

P(X = 0) ≤ (
σ

µ
)2

Proof. Observe that the max value of the P(X = 0) is P(|X − µ| ≥ µ). So ,

P(X = 0) ≤ P(|X − µ| ≥ µ)

Now just apply the Chebyshev’s Inequality .

Lemma. If X is a random variable such that E[X] > 0, then the following holds
true :

P(|X − E[X]| ≥ ϵ E[X]) ≤ (
σ

ϵE[X]
)2

In particular, if var(X) = o(E[X]2), then X ∼ E[X] with high probability

Direct application of Chebyshev’s Inequality.

§5 Grand Finale

§5.1 Random Graphs and Triangles

Now our question is how does the distribution of the triangles look like ?
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Lemma 5.1. The E[#Triangles] in Gn,p is
(
n
3

)
p3 ∼ O(n3p3).

Proof : Let us declare a Random Variable Xn such that :

Xn =
∑

i,j,k∈[n]
distinct

XijXjkXik.

where,

Xij =

{
0 When the vertex i and j are not connected

1 When the vertex i and j are connected

So we can now finish the computation:
By linearity of expectation, each term is p3, so E[Xn] =

(
n
3

)
p3.

Lemma 5.2. The var[#Triangles] in Gn,p ∼ O(n3p3 + n4p5)

Proof : The variance is a bit harder, and we’re mostly worried about the covariance
term: when do those cross-terms come up?
Well, given a pair of triples T1, T2 of vertices, we can find the covariance for those

triangles. If there is at most one vertex of overlap, no edges overlap, so there is no
covariance. The others are a bit harder, but we use cov[X,Y ] = E[XY ]− E[X]E[Y ]:

cov[XT1 , XT2 ] =


0 |T1 ∩ T2| ≤ 1

p5 − p6 |T1 ∩ T2| = 2

p3 − p6 T1 = T2

So we can now finish the computation:

var(Xn) =
(
n
3

)
(p3 − p6) +

(
n
2

)
(n− 2)(n− 3)(p5 − p6) ∼ O(n3p3 + n4p5),

Theorem 5.3

The P [#Triangles=k] in Gn,p ∼ N (µ, σ2)

Proof : Let us denote S as the set of the set of all combinations of the 3 vertices Ej
by the event that the jth set forms a triangle. Then,

P

 k⋂
j=1

Ej

 = P(#Required) = P(Xn = k)

Now, this is indeed tough to calculate. So we have a better idea.
We know that

Xn − µ

σ
∼ N (0, 1)
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This was shown by Rucinski by calculating the kth moment, i.e. E
(
Xn−µ

σ

)k
and that

turns out to be the same as the kth moment of the N (0, 1) .
So, the probability essentially becomes

P(Xn = k) ≈ 1√
2πσ

exp

(
−(k − µ)2

2σ2

)

Remark. We can even condition on the value of npn.

• If npn → 0 then there is a high probability that the graph is triangle-free.

• If npn → ∞ then there is a high probability that the graph has atleast 1 triangle also
the #Triangles ∼ E[Xn] .

• If np → c , it turns out that the #Triangles ∼ Poisson(c) .

§5.2 Pushing towards Probability ...

This article was motivated by the following problem, given at the 55th International
Mathematical Olympiad.

Example 5.4 (IMO 2014/6)

A set of lines in the plane is in general position if no two are parallel and no three
pass through the same point. A set of lines in general position cuts the plane into
regions, some of which have finite area; we call these its finite regions. Prove that for
all sufficiently large n, in any set of n lines in general position it is possible to colour
at least

√
n lines blue in such a way that none of its finite regions has a completely

blue boundary.
Note: Results with

√
n replaced by c

√
n will be awarded points depending on the

value of the constant c.

Remark. We are not going to solve this exactly, which I would leave as an Excercise to
gather your thoughts on the problem .

We’ll show the bound c
√
n for any c < 2

3 .
First, we need to bound the number of triangles.

Claim — There are at most 1
3n

2 triangles.

Proof. Consider each of the
(
n
2

)
intersection of two lines. One can check it is the vertex

of at most two triangles (??)

Since each triangle has three vertex, this implies there are at most 2
3

(
n
2

)
< 1

3n
2

triangles.

It is also not hard to show there are at most 1
2n

2 finite regions1.

1Say, use V − E + F = 2 on the graph whose vertices are the
(
n
2

)
intersection points and whose edges

are the n(n− 2) line segments.

8



Subhojit Maji — 14 December 2024 Counting Probabilities ...

Now color each line blue with probability p. The expected value of the number of lines
chosen is

E[lines] = np.

The expected number of completely blue triangles is less than

E[bad triangles] <
1

3
n2 · p3.

For the other finite regions, of which there are at most 1
2n

2, the probability they are
completely blue is at most p4. So the expected number of completely blue regions here is
at most

E[bad polygons with 4+ sides] <
1

2
n2 · p4.

Note that the expected number of quadrilaterals (and higher) is really small compared
to any of the preceding quantities; we didn’t even bother subtracting off the triangles
that we already counted earlier. It’s just here for completeness, but we expect that it’s
going to die out pretty soon.

Now we do our alteration – for each bad, completely blue region, we un-blue one line.
Hence the expected number of lines which are blue afterwards is

np−
(
n2

3
· p3

)
−

(
n2

2
· p4

)
= np

(
1− np2

3
− np3

2

)
.

Ignore the rightmost np3

2 for now, since it’s really small. We want p = c/
√
n for some

c; the value is roughly c · (1− c2/3) at this point, so an optimal value of p is p = n−1/2

(that is, c = 1); this gives

√
n ·

(
2

3
− 27

16

1√
n

)
=

2

3

√
n− 81

32
.

For n sufficiently large, this exceeds c
√
n, as desired.

How does it feel to solve a recent IMO Problem 6 ?
But we are just ending it right now ... Chillax

If you like to check-out the full power of today’s theorems, then do
learn about Threshold-Functions, Clique-Number, Turan’s Theorem and
Turan’s Graph.
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