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What are Tilings?

In combinatorics, tiling mainly refers to the arrangements of
shapes, called tiles, to cover a geometric space without gaps or
overlaps. The goal is to find ways in which the space can be
partitioned into specific shapes according to certain rules.

The most common example that comes to mind when we think of
tilings, is probably the tiling of a m × n rectangles using dominoes.



Why do we study Tilings?

Though tilings have many applications starting from studying
networks to image processing to actual tilings in buildings, we will
concern ourselves with the application of tilings in studying the
crystalline structure and arrangement of molecules. This example
would enable us to understand why fault-free tilings might be
interesting to study.



What are Faults?

We assume that we are tiling a m × n rectangle using some set of
tiles.

Definition (Vertical fault)
We say that a given tiling has a vertical fault at x = a if for some
1 ≤ a ≤ n − 1 the line x = a does not intersect the interior of any
tile.

Definition (Horizontal fault)
We say that a given tiling has a horizontal fault at y = b if for
some 1 ≤ b ≤ m − 1 the line y = b does not intersect the interior
of any tile.



What are Fault-Free Tilings?

Definition (Vertically fault-free tiling)
A tiling which has no vertical faults is called a vertically fault-free
tiling.

Definition (Horizontally fault-free tiling)
A tiling which has no horizontal faults is called a horizontally
fault-free tiling.

Definition (Fault-free tiling)
A tiling is said to be fault-free if it is both vertically fault-free and
horizontally fault-free.



How are Fault-Free Tilings relevant?

One very interesting example, where fault-free tilings play a crucial
role in the study of perfect crystals.

Perfect crystals are the specific atomic or molecular arrangement
within a material where every unit cell (the basic repeating
structure) is arranged in a fault-free, regular pattern, forming a
lattice that extends uniformly throughout the material. This
uniformity is key to many of the physical properties that make
perfect crystals distinct. Introduction of faults or defects leads to
alteration of the physical properties of the crystal.

Talking of fault-free tilings, it is quite astonishing that R.L. Graham
was the first person to consider such tilings back in the early 1980s,
and since then not much research has been conducted in the field.



Tileability condition

For a m × n rectangle to be tileable the product mn must be
divisible by 2, which implies that at least one of m or n must be
even.

The reason why this is a condition for a rectangle to be tileable is
fairly obvious. Consider a rectangle (2k + 1)× (2l + 1). We
consider a grid on this rectangle, where each cell in the grid has
unit area. Similarly, we consider that a domino has area of 2 units.
Thus, the rectangle has area 2(kl + k + l) + 1, and so, a unit
square remains uncovered by dominoes. Hence, it is not tileable.



A Fault-Free Domino Tiling of 6 × 5 rectangle

Figure 1: Fault-Free Domino Tiling of 6 × 5 rectangle



A necessary condition for being Fault-free

The m × n rectangle must satisfy the condition that m ≥ 5 and
n ≥ 5 for it to admit a fault-free tiling. We will prove that if m < 5
or n < 5, then m × n is not fault-free tileable.



Considering 1 × q and 2 × q rectangles

Figure 2: Fault of 1 × q at x = 2

Figure 3: The fault lines in 2 × q



Considering 3 × q rectangles I

Figure 4: Trying to construct a 3 × q fault-free domino tiling



Considering 3 × q rectangles II

Figure 5: Trying to construct a 3 × q fault-free domino tiling

Figure 6: Fault at y=2



Considering 3 × q rectangles III

Figure 7: Trying to construct another 3 × q fault-free domino tiling

Figure 8: Fault again at y=2



Considering 4 × q rectangles I

Figure 9: Fault at y=2 or x=1

Figure 10: Fault at y=1,2,3 or x=2



Considering 4 × q rectangles II

Figure 11: Trying to construct a 4 × q fault-free domino tiling

Figure 12: Fault at y=2 and y=3



Considering 4 × q rectangles III

Figure 13: Fault at y=2 and y=3

Figure 14: Again Fault at y=2



Necessary & Sufficient Conditions

Theorem (A)
Let p, q ∈ N. A fault-free tiling of a p × q rectangle using
dominoes exists if and only if

1. pq is divisible by 2.
2. p ≥ 5 and q ≥ 5.
3. (p, q) ̸= (6, 6)

As it turns out the very conditions that are necessary for fault-free
tilings are also sufficient. (We will talk about the condition
(p, q) ̸= (6, 6) in a short while.)



Extending the board I

The smallest (p, q) for which a fault-free tiling might exist is (6, 5).
We explicitly show one of it’s fault-free tilings in Figure 15. We
then extend the board along rows and along columns, while always
keeping p even without loss of generality, to show that any
rectangle (6 + 2k)× (5 + 2r + 3l) always has a fault-free tiling.



Extending the board II

Figure 15: Fault-Free Domino Tiling of 6 × 5 rectangle



Fissure Breaks

Before extending boards we introduce the concept of fissure breaks.

Definition (Fissure break)
A fissure break is a set of connected line segments going from one
side of a board to the opposite side that do not intersect any tiles.



Extending the rows of the board I

Claim (1)
For all k ∈ N, (6+ 2k)× 5 has a fault free tiling with a fissure break

(0, 4) −→ (3, 4) −→ (3, 3) −→ (5, 3)

Proof of Claim
We will assume k ∈ N, and we tile a 6 × 5 board as seen in Figure
15. We will show that (6 + 2k)× 5 has a valid fault-free tiling
using induction on k .

Base Case: When k = 1, we have a 8 × 5 board. As in Figure 15,
we break the tiled 6 × 5 board along the fissure break, and insert 5
vertically upright tiles in a row as shown in Figure 16. We thus get
a fault-free tiling of 8 × 5 board, which has the fissure break
(0, 4) → (3, 4) → (3, 3) → (5, 3).



Extending the rows of the board II

Induction Hypothesis: There exists a fault-free tiling of
(6 + 2k)× 5 with fissure break (0, 4) → (3, 4) → (3, 3) → (5, 3).

Inductive Step: By the induction hypothesis the same fissure
break exists, and so we repeat what we did in the base case. Break
along the fissure break and insert 5 vertical tiles. We know that it
is a fault-free tiling of (6 + 2k + 2)× 5. Moreover, we have the
same fissure break given in our claim statement.

Thus, by induction our claim is true.



Extending the rows of the board III

Figure 16: Fault-Free Tiling of 8× 5 rectangle using fissure break in 6× 5



Extending the columns of the board I

Claim (2)
For all r , l ∈ N

⋃
{0}, a 6 × (5 + 2r + 3l) board has a fault-free

tiling with the fissure break

(5 + 2r + 3l − 3, 0) −→ (5 + 2r + 3l − 3, 4) −→
(5 + 2r + 3l − 2, 4) −→ (5 + 2r + 3l − 2, 6)

Proof of Claim We will assume that m, l ∈ N
⋃

0. We will prove
that 6 × (5 + 2m + 3l) is fault-free tileable by a direct proof with
cases.



Extending the columns of the board II

Case 1: We have the given fissure break in a tiling of a 6 × 5 board in
Figure 15. We may use this fissure break to add additional
tiles to the board. We will add width 2r by breaking along the
fissure break and insert 6 horizontal tiles as in Figure 17, which
is a fault-free tiling. Also, the same fissure break exists, so we
can continue to add and break fault lines until we have added
width 2r .

Case 2: We will add the 3l . We start by adding 3. We break along the
given fissure break and add 6 horizontal tiles and 3 vertical
tiles as in Figure 18, which is a fault-free tiling. Also, the same
fissure break exists, so we can continue to add and break fault
lines until we have added width 3l .

Thus, our claim is true as every n ∈ N, with n ≥ 2 can be
expressed as 2r + 3l .



Extending the columns of the board III

Figure 17: Fault-Free Tiling of 6 × 9 using fissure break in 6 × 5



Extending the columns of the board IV

Figure 18: Fault-Free Tiling of 6 × 8 using fissure break in 6 × 5



Proof of Sufficiency in Theorem (A) I

Assume p and q are integers such that pq is divisible by 2, p ≥ 5
and q ≥ 5, and (p, q) ̸= (6, 6). WLOG, assume p is even. We will
prove that for any such p and q, a fault-free tiling of a p × q board
exists.

Consider, p = 6 + 2k for some k ∈ N
⋃

0 and q = 5 + 2r + 3l for
some r , l ∈ N

⋃
0. This can be done for any even integer p ≥ 6 and

any integer q ≥ 5 for q ̸= 6. We start with the tiling of 6 × 5
rectangle as given in Figure 1.



Proof of Sufficiency in Theorem (A) II

By Claim (1), we know that we can add any even number of height
by keeping the tiling fault-free. So we add height 2k . This gives a
fault-free tiling of a (6 + 2k)× 5 board. This tiling will have the
fissure break described in Claim (2). So, we insert tiles to increase
the width by 2m + 3l , and obtain a fault-free tiling as evident from
Claim (2).

In the case where q = 6 we know p ̸= 6. Using the technique above
we can construct a fault-free tiling of a 6× p board and rotate it to
have a tiling of p × 6 board. Thus, the conditions given are
sufficient to have a fault-free tiling.



Generalization

Conditions for fault-free tileability of rectangles using dominoes
naturally gives rise to a question:

What are the conditions for fault-free tileability of rectangles using
tiles other than dominoes?

In 1981 R.L.Graham, gave the conditions for which a p × q
rectangle admits a fault-free tiling using a× b tiles. The paper by
Graham, was the very first paper that formally dealt with the
problem of fault-free tilings.



Analogue to the Tileability condition

For a p × q rectangle to be tileable using a× b tiles, each of a and
b must divide at least one of p or q.

An obvious question that might arise is that "Why is the tileability
condition not ab divides pq?". To check this, we can take
(a, b) = (14, 15) and (p, q) = (20, 21). We can observe that the
rectangle p × q is not tileable using a× b, although it satisfies the
condition ab divides pq.



Analogue to Fault-Free Tileability condition

There should be an analogue to the earlier second condition that
required p, q ≥ 5. However, the corresponding condition is
unexpected. It states that:

Each of p and q must be able to be expressed as a sum of xa+ yb
with positive integers x and y in at least two ways.

Placing a stack of horizontal tiles or a stack of vertical tiles
guarantees the existence of a fault. Thus, this condition gives us
the freedom to place the tiles, such that, we do not always have to
place the same number of tiles horizontally and vertically.



Necessary & Sufficient Conditions

Theorem (B)
A fault-free tiling of a p × q rectangle with a× b exists (where we
assume pq > ab and gcd(a, b) = 1 if and only if

1. Each of a and b divides at least one of p or q.
2. Each of p and q can be expressed as xa+ yb, x , y > 0, in at

least two ways.
3. For (a, b) = (2, 1), (p, q) ̸= (6, 6).



Proof Sketch of Sufficiency I

Consider p = x1a+ y1b = x2a+ y2b and
q = x3a+ y3b = x4a+ y4b. Without loss of generality we assume
that a > b, and also x1 > x2, y1 < y2, x4 > x3, y3 > y4.

Now we refer to Figure 19, where we can place horizontal tiles in
the rectangle y1b × x3a. Similarly we tile the rectangle x1a× y4b
using only vertical tiles. In a similar manner we also tile the other
rectangles y2b × x4a and x2a× y3b. Owing to the fact that
gcd(a, b) = 1, we get that the fault lines are removed as the
probable fault line tries to move through one of these subrectangles
to the next, both vertically and horizontally.



Proof Sketch of Sufficiency II
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Figure 19: A visualisation of Proof sketch argument



Further Progress

Though the first encounter with fault-free tilings dates back to the
1980s, we still do not know much about them and they turn out to
be hard to study. The only progress that has been done in fault-free
tilings is:

1. Aanjaneya, M., & Pal, S. P. (2006). Faultfree Tromino Tilings
of Rectangles. arXiv preprint math/0610925.

2. Montelius, E. (2019). Fault-Free Tileability of Rectangles,
Cylinders, Tori, and Möbius Strips with Dominoes. arXiv
preprint arXiv:1912.04445.

3. Alabi, O. J., & Dresden, G. (2021). Fault-Free Tilings of the
3× n Rectangle With Squares and Dominos. Journal of
Integer Sequences, 24(2), 1-11.



The Obvious Next Questions I

1. One obvious step is finding generating functions for number of
fault-free tilings of some particular p × q rectangle using a× b
tiles.

2. Another possibility is to find conditions for fault-free tilings of
rectangles (and other shapes) using a set of tiles rather than
just one or by using tiles that are not of the form a× b.



The Obvious Next Questions II

3. Another question that naturally arises is why are there no
fault-free tilings of the 6 × 6 rectangle using dominoes, and
why is it the only anomaly.

4. Another question that arises from an observation is that the
number of fault-free tilings seems to drop at even q for p = 6
up to q ≤ 10. It goes as follows:
(0, 0, 0, 0, 6, 0, 124, 62, 1646, 1630, 18120, 25654, 180288, 317338, ...).
Similarly the number of fault-free tilings takes a dip at q = 6
for p = 8. However, in all other cases the number of fault-free
tilings steadily increases (if a tiling exists in that case) as q
increases while p remains fixed. No reason is known for this
behaviour.
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