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1 Introduction

In this report we have discussed the ”Tower of Hanoi”(ToH) game and a special vari-
ation of the game, called the ”Switching Tower of Hanoi”(STH) as well as, the graphs
associated to them called Hanoi graph Hn

p and Sierpiński graph Sn
p , respectively. More-

over, we would also discuss a variation of the Sierpiński graphs called the Sierpiński
Triangle graphs and it’s median. Both the games ToH and STH are aimed at completing
a simple task of shifting a stack/pyramid of n discs from one peg to another obeying a
set of rules which will be discussed later in sections 2 and 5, respectively.
The Hanoi graph Hn

p consists of all possible arrangements of n discs on p edges in ToH
as vertices and if a legal move exists between two given arrangements then the vertices
corresponding to these arrangements are connected by an edge. The Sierpiński graph
Sn
p consists of all possible arrangements of n discs on p edges in STH as vertices and if

a legal move exists between two given arrangements then the vertices corresponding to
these arrangements are connected by an edge. We will discuss more about the Hanoi
graphs and Sierpiński graphs in sections 3 and 6.
For Hanoi graphs and Sierpinski graphs, we would first define some terminologies related
to Hn

p and Sn
p .

• Perfect state of a Tower of Hanoi game is defined as a state in which all the n discs
in the game lie on a single peg in such a way that no disc of larger diameter rests
on a disc of smaller diameter.

• Regular state of a Tower of Hanoi game is defined as a non-perfect state where the
n discs are arranged on the p pegs in such a way that no disc of larger diameter
rests on a disc of smaller diameter

• Optimal solution of a Tower of Hanoi game is defined as the set of moves required
to move the tower from one peg to another in the minimum number of steps.

• Optimal path of a Tower of Hanoi game is defined as the path containing the
sequence of moves involved in the optimal solution for that game.

We would also discuss three different classes of problems associated with this game. These
problems entails:

1. The P0 problem refers to the task of shifting the tower from the initial peg to the
goal peg in the minimum number of moves.

2. The P1 problem refers to the task of shifting all the discs from an arbitrary initial
regular state to a perfect state on the goal peg.

3. The P2 problem refers to the task of shifting all the discs from an arbitrary regular
initial state to an arbitrary regular goal state.

The Hanoi graphs and Sierpinski graphs find various applications owing to their fractal
structure. Some of these applications are:

• They can be used to study universal topological spaces.

• They can be used to design interconnection networks.
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• They can be used to explore various graph properties, such as distance, domination,
coloring, embedding, and hamiltonicity.

The non-clique edges of a graph are the edges not present in a complete subgraph of the
given graph. Sierpiński Triangle graphs are a variation of Sierpiński graphs formed by
contracting all non-clique edges present in the Sierpiński graph. The Sierpiński Triangle
graph formed by contracting the non-clique edges of Sn+1

p is represented by Ŝn
p .

2 Tower of Hanoi

The classical Tower of Hanoi, also known as the Tower of Brahma or Lucas’ Tower, is
a mathematical game involving 3 pegs and n discs, whose objective is to shift the discs
from the initial peg to a different desired goal peg. In the Tower of Hanoi game, a disc
can be moved from one peg to any of the other pegs and at any given point of time the
discs are always arranged on the pegs in a manner such that the largest disc on the peg
lies at the bottom and the diameter of the discs decrease continually as we approach the
top of that peg [7].

The rules of the Tower of Hanoi game are as follows [7]:

1. In each move the player must move exactly one disc from a peg and shift to some
other peg.

2. In each move the player is only allowed to move the disc on the top of a stack on a
peg.

3. In each move the player is only allowed to place the removed disc on top a disc
of larger diameter, that is, at no given point of time should there be a larger disc
resting on top of a smaller disc.

Theorem 2.0.1 (Theorem 2.1 in [4]). The classical Tower of Hanoi task for n discs
(n ∈ N) has a unique optimal solution of length 2n − 1.

Proof. We use induction to prove the above theorem.
Base Case: For n=1, we can move the n discs from initial peg to the goal peg in just 1
move, which is equal to 2n − 1 for n=1.
Induction Hypothesis: Let for n=k, the number of moves required to reach perfect goal
state be 2k − 1.
Inductive Step: Let n=k+1. For this case, the optimal solution entails shifting the
smallest k discs from the initial peg to the intermediate peg (the peg other than the
initial and the goal peg), which takes 2k − 1 moves optimally. Then the largest disc is
moved from initial peg to goal peg, which can be done in 1 move. Finally we move the
stack of k discs from the intermediate peg to the top of the largest disc on the goal peg,
which takes 2k−1 moves optimally. Thus, the total number of moves required in shifting
the entire stack of k+1 discs from the initial peg to the goal peg optimally requires (2k−1
+ 1 + 2k − 1)=2k+1 − 1 moves.
Hence, we conclude that in the classical Tower of Hanoi task for n discs has a unique
optimal solution of length 2n − 1.

The Tower of Hanoi problem has many variations, such as, the Linear Tower of Hanoi
problem, the Twin Tower problem, the Switching Tower of Hanoi problem, and many
others. We will discuss about the Switching Tower of Hanoi in section 5.

3



3 Hanoi Graphs and their properties

Hanoi graphs, Hn
p , can be defined as the graphs associated with ToH problem consisting

of p pegs and n discs. The vertices of Hn
p are labelled as s = k1k2...kn, where ki refers

to the peg on which the ith disc rests. The vertex set of the graph Hn
p is defined as,

V(Hn
p )={s = k1k2...kn : 0 ≤ ki ≤ p− 1,∀1 ≤ i ≤ n}. The number of elements in V(Hn

p )
is equal to the total number of possible arrangements of the n discs on the p pegs, that
is, equal to pn. The edge set of Hn

p is represented by E(Hn
p ), and an edge exists between

2 given vertices, represented by s1 and s2, if and only if state s1 can be achieved from
state s2 and vice versa by exactly one legal move. The edge set of Hn

3 is defined as,
E(Hn

3 )={{sdi(3− i− j)d − 1, sdi(3− i− j)d − 1}|
i, j ∈ T, i ̸= j, d ∈ [n], sd ∈ T n−d}, where T = 0, 1, 2 and Tm is the set of all possible
m− tuples where the elements of a m− tuple can take values belonging to T .

Figure 1: Hanoi graph H3
3

3.1 Properties of the Hanoi Graph Hn
3

Here, we discuss the properties of Hanoi graph Hn
3 . First we start by defining some graph

theoretic and group theoretic terms. [5][6]

• δ(G) is defined as the minimum degree of a vertex in graph G

• χ(G) is the chromatic number of graph G defined as the least number of colours
required to colour the vertices of the graph in such a way that no two adjacent
vertices share the same colour.

• κ(G) is the connectivity of graph G which is defined as the minimal vertex cut. A
vertex cut of a connected graph G is the set of vertices the removal of which renders
G disconnected.

• d(v) is the total distance of a vertex v in the graph G which is defined as, d(v) =∑
u∈V d(u, v)
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• d(v) is the average distance of a vertex v in the graph G which is defined as d(v) =
d(v)
|G|−1

.

• ϵ(v) is the eccentricity of a vertex v in the graph G which is defined as, ϵ(v) =
maxu∈V d(u, v).

• prox(G) is the proximity of graph G which is defined as prox(G) = min{d(v)|v ∈
V }.

• rem(G) is the remoteness of graph G which is defined as rem(G) = max{d(v)|v ∈
V }.

• diam(G) is the diameter of the graphG which is defined as diam(G) = max{ϵ(v)|v ∈
V }.

• rad(G) is the radius of the graph G which is defined as rad(G) =
min{ϵ(v)|v ∈ V }.

• N [D] is the neighbourhood of the set of vertices D, which includes all those vertices
that are adjacent to at least one vertex in set D.

• γ(G) is the domination number of graph G is the minimum size of a G-dominating
set, that is, the size of the smallest subset D of V (G) such that N [D] = V (G)

• We call set C ∈ V (G) to be 1-error correcting if the neighbourhood of the elements
of C do not overlap.

• A permutation group is defined as a group G whose elements are permutations of a
given set T and whose group operation is the composition of permutations in G. The
group of all permutations defined on a set T is the symmetric group, represented
by Sym(T).

• A group isomorphism is a function between two groups that sets up a one-to-one
correspondence between the elements of the groups with respect to the given group
operations.

• The automorphism group on a group X, represented by Aut(X), is defined as the
group of all group isomorphisms from X to itself.

Now we state some graph theoretic theorems.

Theorem 3.1.1 (Subsection 1.1.2 in [5]). For any graph G, κ(G) ≤ δ(G).

Theorem 3.1.2 (Theorem 1.40 in [5]). (Kuratowski’s Theorem) A graph G is planar if
and only if it contains no subdivision of K3,3 or K5.

Theorem 3.1.3. [4] If C ∈ V (G) is 1-error correcting, then γ(G) ≥ |C|.

Corollary 3.1.3.1. [4] If C is a perfect code of G, then γ(G) = |C|.

Now we will state the properties of the Hanoi graph Hn
3 .

• Hn
3 is a Hamiltonian graph.[4]
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• Hn
3 is a planar graph.[4] This is because the maximum degree of a vertex in Hn

3 is
3 so it cannot have a subdivison K5 and atleast two adjacent vertices of a given
vertex are connected by an edge so we can say that Hn

3 does not have a subdivision
of K3,3. Thus, by Theorem 3.1.2., we can conclude that Hn

3 is a planar graph.

• χ(Hn
3 ) = 3. [Proposition 2.21 in [4]] This is because for a given s ∈ T n if we define

f(s) =
∑

i∈T ki(mod3), then we can observe that for any two adjacent vertices, s1
and s2, the values of f(s1) and f(s2) are never equal. So, we colour each vertex
with equal value of f(s) with the same colour. The values that f(s) can take are
0,1, and 2. So, we need only 3 colours.

• κ(Hn
3 ) = 2. [Proposition 2.22 in [4]] This is because as Hn

3 is a Hamiltonian graph
so must be k-connected where k ≥ 2 and as δ(Hn

3 ) = 2 so from Theorem 3.1.1., we
know that, κ(Hn

3 ) ≤ 2. Combining these two facts we get κ(Hn
3 ) = 2.

• γ(Hn
3 ) =

1
4
(3n+2+(−1)n).[4] As Hn

3 has a perfect code containing 1
4
(3n+2+(−1)n)

codewords, so by Corollary 3.1.3.1., we can conclude that γ(Hn
3 ) =

1
4
(3n+2+(−1)n).

• rad(Hn
3 ) = 2n − 2n−2.[6]

• diam(Hn
3 ) = 2n − 1.[Theorem 2.25 in [4]] This can be proved by considering a

Hm+1
3 and assuming the induction hypothesis that diam(Hm

1 ) = 2m1 . Now we
consider s, t ∈ Tm and we know that d(is, jt) ≤ d(is, ikm) + 1 + d(jkm, jt) ≤
2m − 1 + 1 + 2m − 1 = 2m+1 − 1 (from induction hypothesis). Hence, we can
conclude from the inductive proof that diam(Hn

3 ) = 2n − 1.

• prox(Hn
3 ) =

d2(n)
3n−1

. [Hypothesis A in [6]] d2(n) = min{d(s)|s ∈ T n}, ∀n ∈ N.

• rem(Hn
3 ) =

d0(n)
3n−1

. [Proposition 1 in [6]] d0(n) = max{d(s)|s ∈ T n},∀n ∈ N.

• For any n ∈ N, Aut(Hn
3 )
∼= Sym(T ). [Theorem 2.23 in [4]] The six automorphisms

of Hn
3 , gσ : T n → T n, s → σ(sn)...σ(s1) for σ ∈ Sym(T ), form a subgroup of

Aut(Hn
3 ) isomorphic to Sym(T ). Now let, g ∈ Aut(Hn

3 ). Since g preserves degrees,
we necessarily have g(kn) = σ(k)n for some σ ∈ Sym(T ) and ∀k ∈ T .

4 Classical Problems related to Hanoi Graphs

Now, we will be discussing three classes of classical problems, P0,P1, and P2, related to
Hanoi graphs Hn

p .

4.1 Perfect to Perfect or P0 problem

The P0 problem on Hn
3 entails the task of shifting the entire tower of n discs from one

peg to another. Before diving into the ways of solving such a problem we first state some
observations and theorems.

Theorem 4.1.1 (Proposition 2.2 in [4]). In the optimal solution to transfer n ∈ N discs
from one peg to another, disc d ∈ [n] moves for the first time in step 2d−1 and for the
last time in step 2n − 2d−1; in particular, the largest disc n moves exactly once, namely
in the middle of the solution.
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Proof. In the optimal solution, the strategy is to move a the tower of d-1 discs comprising
of discs {1, 2, 3, ..., d − 1} to the goal peg (if parity of n and d are different) or to the
intermediate peg (if parity of n and d are same) and then move the dth disc to the
intermediate peg (if parity of n and d are different) or to the goal peg (if parity of n and
d are same) and then the tower of those d-1 discs is shifted and placed over the dth disc.
In optimal solution, the number of moves required to shift a tower of d-1 discs from one
peg to another is 2d−1−1. So, the dth disc is moved for the first time in the (2d−1)th move.
Moreover, as total number of moves in moving the n discs is 2n − 1 so, by symmetry we
know that the dth disc is moved for the last time in the (2n − 2d−1)th move.

Remark 4.1.1. [4] In an optimal solution of moving a tower from a peg to another peg
the smallest disc is shifted in every odd move.

First we look at Olive’s Algorithm[4] to solve the P0 problem which makes use of
Remark 4.1.1.

Algorithm 1 Olive’s algorithm

Require: n: number of discs {n ∈ N}
Require: i: source peg {i ∈ T}
Require: j: goal peg {j ∈ T}
if n=0 or i=j then

STOP
end if
if n is odd then

move disc 1 from peg i to peg j
else

move disc 1 from peg i to peg 3-i-j
end if
remember move direction of disc
while not all discs are on peg j do

make legal move of disc not equal 1
make one move of disc 1 cyclically in its proper direction

end while

Now we take a look at the Idle Peg Algorithm[4] which makes use of Theorem 4.1.1
to determine the idle peg, that is, the peg not involved in a given move. It uses the idea
of this idle peg to make the moves and reach the perfect state using the optimal solution.

Algorithm 2 Idle peg algorithm

Require: n: number of discs {n ∈ N}
Require: i: source peg {i ∈ T}
Require: j: goal peg {j ∈ T}
idle← i
dir ← (−1)n(j − i)
while not all discs are on peg j do

idle← (idle+ dir) mod 3
make legal move between pegs different from idle

end while
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We can also make use of a recursive approach[4]to solve the P0 problem, that is, we
make use of the solution of the P0 problem for the graph Hn−1

3 to formulate a solution
of the P0 problem for the graph Hn

3 .

Algorithm 3 Recursive algorithm

Procedure p0(n,i,j)
Require: n: number of discs {n ∈ N}
Require: i: source peg {i ∈ T}
Require: j: goal peg {j ∈ T}
if n ̸= 0 and i ̸= j then

k ← 3− i− j ▷ the auxiliary peg different from i and j
p0(n-1, i, k) ▷ transfers n-1 smallest discs to auxiliary peg
move disc n from peg i to peg j ▷ moves largest disc to goal peg
p0(n-1, k, j) ▷ transfers n-1 smallest discs to goal peg

end if

4.2 Regular to Perfect or P1 problem

The P1 problem on Hn
3 entails the task of moving the n discs from a regular state to a

perfect state on a given peg. Before diving into ways of solving the P1 problem we need
to first state some theorems.

Theorem 4.2.1 (Proposition 2.3 in [4]). A state s ∈ T n belongs to the optimal solution
path from in to jn if and only if s is admissible, that is, the corresponding arrangements
on all three pegs are admissible.

Proof. We prove by induction that there are 2n admissible states in T n with respect to i
and j and that all 2n states on the shortest path from in to jn are admissible.
For n = 0, we just note that the empty arrangement on a peg is admissible.
Let s = sn−1...s1. Then s = sns is admissible with respect to i and j if and only if
sn ∈ {i, j} and s is admissible in T n−1 with respect to sn and 3-i-j. Therefore, by
induction assumption, there are 2 · 2n−1 = 2n admissible states in T n. The first 2n−1

states on the optimal path from in to jn are those where sn = i, that is, the largest disc
n is lying on a disc of different parity, and s belongs to the shortest path from in−1to
(3− i− j)n−1 such that s is admissible with respect to i and j because disc n replaces the
immovable disc n + 1. The same argument applies for the last 2n−1 states, where now
disc n is on disc n + 3 of opposite parity.

Theorem 4.2.2. [4] For j ∈ [p] and any vertex s=sn...s1 of Hn
p ,

d(s, jn) =
∑n

i=1(sd ̸= j).2d−1

Proof. By induction on n. The statement is trivial for n = 0. Let n ∈ N and s = sn+1s,
s ∈ [p]n0 .
If sn+1 = j, then we can use the shortest path in Hn

p from s to jn and add a j in front of
each vertex. Hence
d(s, jn+1) ≤

∑n
d=1(sd ̸= j).2d−1 =

∑n+1
d=1(sd ̸= j).2d−1.

If sn+1 ̸= j, we can compose a path from s to jn+1 by going from sn+1s to sn+1k
n on a

shortest path of length ≤
∑n

d=1(sd ̸= j).2d−1, and then we move to jkn and finally from
there to jn+1 in 2n − 1 steps, altogether
d(s, jn+1) ≤

∑n+1
d=1(sd ̸= j).2d−1.
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Theorem 4.2.3 (Theorem 2.7 in [4]). The task to get from a regular state s ∈ T n to the
perfect one on peg j ∈ T has a unique optimal solution of length ≤ 2n − 1.

Proof. We use induction to prove this theorem.
Base Case: If n=1, then we can move from regular state s to perfect state in ≤ 2n − 1
moves.
Induction Hypothesis: Let ∀ n ≤ m, the theorem holds true.
Inductive Step: The regular state s belongs to any one of the 3 subgraphs iSm

3 , jSm
3 ,

or kSm
3 . It takes ≤ 2m − 1 moves to go from regular state s to an extreme vertex in

the subgraph, then we make another move to shift to one of the other two subgraphs
if needed, and lastly we move to the extreme vertex of Sm+1

3 in 2m − 1. Thus, we take
≤ (2m− 1+1+2m− 1) = 2m+1− 1 moves to go from regular state s to perfect state.

Theorem 4.2.4 (Proposition 2.9 in [4]). Suppose that in an optimal solution for a P1
task if disc d is moved for d ̸= 1 then in the next move, disc 1 is moved and it is moved
onto disc d if and only if d is even.

Proof. If a disc d ̸= 1 is moved onto another disc then after that there are only 3 possible
legal moves moving the disc d back to it’s last position or moving disc 1 to any of the
other two pegs. Thus, to make progress in the game we need to move disc 1.
For n = 2, disc 1 has to move atop disc 2 after the latter’s only move. For the induction
step we may assume that disc n + 1 is originally not on its goal peg, in which case it
moves exactly once. Before this move the induction assumption applies. The move of disc
n + 1 is followed by a transfer of a perfect n-tower onto disc n + 1 and here, according
to Olive’s solution, the first move, necessarily by disc 1, is to the goal peg if and only if
n is odd, i.e. n + 1 is even.

For a solution to the P1 problem, we need to first decide if the regular state s belongs
to the optimal path for which we use the following algorithm[4] which makes use of
Theorem 4.2.1.

Algorithm 4 Detection of deviation from optimal path

Require: n: number of discs {n ∈ N}
Require: i: source peg {i ∈ T}
Require: j: goal peg {j ∈ T}
Require: s: regular state on optimal path {s ∈ T n}
k ← 3− i− j ▷ state of the P1-automaton
while d ≥ 2 do

if sd = k then
s is not on optimal path, STOP

else
k ← 3− k − sd ▷ updated state of P1-automaton

end if
d← d− 1

end while
if s1 = k then s is not on optimal path, STOP
end if
s is on optimal path
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Now there can be two possible approaches. Let us first consider the approach for the
case where s is on optimal path.[4] Before stating the algorithm we first state what we
mean by right direction for a disc. We consider the following cases for stating the right
direction:

• If n=even and disc d to be moved is odd then the right direction is:
initial peg → intermediate peg → goal peg → initial peg

• If n=even and disc d to be moved is even then the right direction is:
initial peg → goal peg → intermediate peg → initial peg

• If n=odd and disc d to be moved is even then the right direction is:
initial peg → intermediate peg → goal peg → initial peg

• If n=odd and disc d to be moved is odd then the right direction is:
initial peg → goal peg → intermediate peg → initial peg

Algorithm 5 Optimal first move if s is on optimal path

Require: n: number of discs {n ∈ N}
Require: i: source peg {i ∈ T}
Require: j: goal peg {j ∈ T}
Require: s: regular state on optimal path {s ∈ T n}
let d be the smallest top disc of s different from 1
if the legal move of d is in the right direction then move disc d
elsemove disc 1 in the right direction
end if

Next we state the algorithm to follow if s is not on optimal path.[4]

Algorithm 6 Best first move if s is not on optimal path

Procedure : p1(n,j,s)
Require: n: number of discs {n ∈ N}
Require: j: goal peg {j ∈ T}
Require: s: regular state on optimal path {s ∈ T n}
µ← 0 ▷ length of path
δ ← n+ 1 ▷ active disc
k ← j ▷ state of P1-automaton
while d ≥ 1 do

if thensd ̸= k
µ← µ+ 2d−1

δ ← d
k ← 3− k − sd ▷ updated state of P1-automaton

end if
d← d− 1

end while
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4.3 Regular to Regular or P2 problem

The P2 problem on Hn
3 entails the task of shifting the n discs from a regular state to

another regular state. Before diving into ways of solving the P2 problem we need to first
state some theorems.

Theorem 4.3.1. [4] The maximum number of moves required to go from regular state s
to regular state t is 2n − 1.

Proof. Let, i ̸= j ̸= k and s, t ∈ T n

d(is, jt) ≤ d(is, ikn) + 1 + d(jkn, jt) = d(s, kn) + 1 + d(kn, t) ≤ (2n − 1) + 1 + (2n − 1) =
2n+1 − 1 (Using Theorem 4.2.3)

Now we look at the algorithm to solve a P2 problem for a Hn
3 .[4]

Algorithm 7 Algorithm to solve P2 problem for Hn
3

Require: n: number of discs {n ∈ N}
Require: s: regular initial state {s ∈ T n}
Require: t: regular goal state {t ∈ T n}
µ← 0 ▷ length of path
N ← n ▷ largest disc to be moved
while sN = tN do

N ← N − 1
end while
if N=0 then

STOP
end if
C ← 1 ▷ case of P2 decision
s← sN−1...s1, t← tN−1...t1 ▷ s = sn...s1 and t = tn...t1
p1(N − 1, s, 3− sN − tN)
µ1 ← µ, δ1 ← δ, i1 ← i ▷ µ, δ, i : output of p1(n,j,s)
p1(N − 1, t, 3− sN − tN)
µ1 ← µ1 + 1 + µ ▷ length of one-move path
p1(N − 1, s, tN)
µ2 ← µ, δ2 ← δ, i2 ← i ▷ µ, δ, i : output of p1(n,j,s)
p1(N − 1, t, sN)
µ2 ← µ2 + 2N−1 + 1 + µ ▷ length of two-move path
µ← µ1

if µ1 ≥ µ2 then
C ← C + 1, µ← µ2

end if
if µ1 = µ2 then

C ← C + 1
end if

5 Switching Tower of Hanoi

Switching Tower of Hanoi (STH) is one of the many variations of the Tower of Hanoi
(ToH) game. The goal of STH is the same as the goal of ToH, that is, we need to shift
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the tower from one peg to another. However, STH has a modified set of rules, which can
be stated as follows[4]:

1. A disc can only be placed on top a disc of larger diameter than itself.

2. The Switching Tower of Hanoi allows 2 types of legal moves:

(a) The smallest disc can be shifted from it’s initial peg to any other peg.

(b) Any disc (say m) other than the smallest one lying on top of a stack on a peg
can be switched with a tower lying on another peg if and only if the tower
consists of all the discs smaller than disc m.

6 Sierpiński Graphs and their properties

Sierpiński graphs are extensively studied graphs of fractal nature with applications in
topology, mathematics of ToH and computer science. In context of the STH, it is used
to map every possible arrangement in the game in a graphical manner where the vertices
correspond to the arrangements in the game and the edges connects two vertices if one
can be reached from the other by exactly one legal move.
For moving from a perfect state on the initial peg to a perfect state on the goal peg, STH
takes 2n − 1 moves in the optimal solution when there are n discs and 3 pegs involved.
The Sierpiński graph over n discs and p pegs is represented by Sn

p . The vertex set of Sn
p

is defined as V (Sn
p ) = {s = k1k2...kn : 0 ≤ ki ≤ p− 1,∀1 ≤ i ≤ n}. The edge set of Sn

p

is defined as E(Sn
p ) = {{sijd−1, sjid−1}|0 ≤ i, j ≤ p − 1, i ̸= j, 1 ≤ d ≤ n, s ∈ T n−d, T =

{0, 1, ..., p− 1}}.[4]

Figure 2: Sierpiński graph S3
3

6.1 Properties of small Sierpiński graphs

While considering the small Sierpiński graphs we will be mainly focusing on the Sierpiński
graphs, Sn

1 , S
1
p , S

n
2 , and Sn

3 . Let, us look at them one by one.
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• First we consider the Sierpiński graph Sn
1 . We can observe that in this graph p=1,

that is, it has only one peg, and so all the discs lie on this peg. Therefore, this is a
simple graph with a single vertex.[6]

• Next we consider the Sierpiński graph S1
p . Here, we have n=1 and so the vertices

are just the peg on which the disc lies. Therefore, this is a simple graph with p
vertices and the disc can shift from any peg to the other and so all the vertices
are interconnected. Thus, the graph S1

p is a complete graph of order p, that is,
S1
n
∼= Kp.[6]

• Now we consider the Sierpiński graph Sn
2 . The graph Sn

2 is isomorphic to a path
of length 2n, that is, Sn

2
∼= P2n . Thus, we first consider the properties of graph

P1+k. We first express the vertex set of P1+k as, V (P1+k) = {0, 1, 2, ..., k}, where an
edge exists between two vertices if the two numbers corresponding to those vertices
are adjacent on the number line. We can observe that Sn

2 is planar. It can also
be trivially observed that radius of P1+k is, rad(P1+k) =

1
2
(k+(k mod 2)), and it’s

diameter is, diam(P1+k) = k. It can also be easily observed that for any vertex

v ∈ V (P1+k), d(v) =
1
2
k(k+1)-v(k-v), and therefore, d(v) = k+1

2
− v(k−v)

k
. Thus, we

can observe that the proximity of Pk+1 is, prox(Pk+1) =
1
4k
(k2 + 2k + (k mod 2))

and the remoteness of Pk+1 is, rem(Pk+1) =
k+1
2
.[6]

• Lastly we consider the Sierpiński graph Sn
3 . This graph is isomorphic to the Hanoi

graph with n discs and 3 pegs, that is, Sn
3
∼= Hn

3 . Therefore, S
n
3 has all the properties

of Hn
3 stated in section 3.1.[6]

6.2 Properties of general Sierpiński graphs

Now we will state some properties of the general Sierpiński graph Sn
p .

Figure 3: Sierpiński graph S3
4

13



• For any p ≥ 2 and any n ∈ N, diam(Sn
p ) = 2n − 1.[4]

• For any n ≥ 1 and any p ≥ 3, the graph Sn
p is hamiltonian.[Proposition 4.12 in [4]]

• The only Sierpiński graphs that are planar are Sn
3 , S

n
2 , S

n
1 , S

0
p , S

1
4 , and S2

4 . We
know that Sn−1

p is a subgraph of Sn
p , and as for p ≥ 5 and S1

p is non-planar by
Kuratowski’s theorem as it has a K5 subdivision, so by induction we can say that
for p ≥ 5, all graphs Sn

p are non-planar when n ≥ 1. In S3
4 when we try to deaw

the overlapping diagonals outwardly the overlap instead with the edges joining any
two S2

4 subgraphs, so it is non-planar and so all other Sn
4 .[4]

• We can express the edge set of Sn+1
p recursively as:

∀n ∈ N : E(Sn+1
p ) = {{ir, is}|i ∈ [p]0, {r, s} ∈ E(Sn

p )} ∪ {{ijn, jin}|i, j ∈ [p]0, i ̸=
j}[4]

• For any n, p ∈ N, Aut(Sn
p )
∼= Sym([p]0).[Theorem 4.14 in [4]] We have already seen

that Aut(Sn
3 )
∼= Sym(T ), which holds as Sn

3
∼= Hn

3 . We can extend this to all Sn
p

for p ≥ 3.

• The clique number of Sn
p is, ω(Sn

p ) = p.[Theorem 4.3 in [4]] For n ∈ N, each
Sn
p contains pn−1 isomorphic copies of S1

p
∼= Kp, namely the subgraphs sS1

p with

s ∈ [p]n−1
0 . The constitute the p-cliques in Sn

p and they are the maximal cliques in
Sn
p as the degree of all but the extreme vertices is p and one of the edges from each

of these vertices connect them to another subgraph of Sn
p .

7 Classical Problems related to Sierpiński Graphs

In context of the Sierpiński graphs, the P0 problem is considered rather important. So,
we will be stating algorithms for the P0 problem only.

7.1 Perfect to Perfect or P0 problem

Before discussing about the P0 problem for Sierpiński graphs we first take a look at some
theorems.

Theorem 7.1.1 (Proposition 4.5 in [4]). For j ∈ [p] and any vertex s=sn...s1 of Sn
p ,

d(s, jn) =
∑n

i=1(sd ̸= j).2d−1

Proof. We use induction to prove this theorem. The statement is trivial for n = 0. Let
n ∈ N and s = sn+1s, s ∈ [p]n0 .
If sn+1 = j, then we can use the shortest path in Sn

p from s to jn and add a j in front of
each vertex. Hence
d(s, jn+1) ≤

∑n
d=1(sd ̸= j).2d−1 =

∑n+1
d=1(sd ̸= j).2d−1.

If sn+1 ̸= j, we can compose a path from s to jn+1 by going from sn+1s to sn+1j
n on a

shortest path of length ≤
∑n

d=1(sd ̸= j).2d−1, and then we move to jsnn+1 and finally from
there to jn+1 in 2n − 1 steps, altogether
d(s, jn+1) ≤

∑n+1
d=1(sd ̸= j).2d−1.

Theorem 7.1.2. [4] In a Sierpiński graph Sn
3 , the number of moves involved in an optimal

solution for shifting the tower from one peg to another is 2n − 1.

14



Proof. The goal peg and initial peg are different. So, we can use Theorem 7.1.1 and write
the expression as:
d(in, jn) =

∑n
i=1 2

d−1 = 2n − 1.

Remark 7.1.1. [4] We can observe that in an optimal solution of the P0 problem for
Sierpiński graph, disc 1 is moved in every odd move and a switch is made in every even
move.

Now we will be looking at some algorithms to solve the P0 task for the Sierpiński
graph Sn

3 . We make use of Remark 7.1.1 to devise the following algorithm.

Algorithm 8 Algorithm to solve P0 task for Sn
3

Require: n: number of discs {n ∈ N}
Require: i: source peg {i ∈ T}
Require: j: goal peg {j ∈ T}
if n=0 or i=j then

STOP
end if
move disc 1 to goal peg
while not all discs are on peg j do

switch disc m on top of peg i with tower of m-1 discs on peg j
move disc 1 to goal peg

end while

We now devise a algorithm using a recursive approach to solve the P0 problem for
Sn
3 .[4]

Algorithm 9 Recursive algorithm

Procedure p0s(n,i,j)
Require: n: number of discs {n ∈ N}
Require: i: source peg {i ∈ T}
Require: j: goal peg {j ∈ T}
if n ̸= 0 and i ̸= j then

p0s(n-1, i, j) ▷ transfers n-1 smallest discs to goal peg to give state ijn−1

switch disc n with tower of n-1 discs ▷ switch is done to reach state jin−1

p0s(n-1, i, j) ▷ transfers n-1 smallest discs to goal peg to reach state jn

end if

8 Sierpiński-type Graphs

We first start by indroducing the different variations of Sierpiński graphs. We come across
4 main variations of the Sierpiński graphs, namely, Sierpiński Triangle Graphs, Schreier
Graphs, WK-recursive Networks, and Regularizations.[2]

1. Sierpiński Triangle Graphs : The class of Sierpiński Triangle Graphs Ŝn
p is

obtained by contracting all the non-clique edges of the Sierpiński Graph Sn+1
p .

2. Schreier Graphs : The class of Schreier Graphs H(n) is obtained by adding loops
on the extreme vertices of the Sierpiński Graph Sn

3 .
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3. WK-recursive Networks : The class of WK-recursive Networks WK(p, n) is
obtained by adding p additional open edges to each of the extreme vertices of Sn

p .
It is used as a model for interconnection networks.

4. Regularizations : Regularizations are broadly classified into two types, +Sn
p and

++Sn
p .

(a) +Sn
p : These type of regularizations are obtained by adding an additional

vertex w and joining it to all the extreme vertices of Sn
p .

(b) ++Sn
p : These type of regularizations are obtained by adding a copy of Sn−1

p

and joining all of it’s extreme vertices with the extreme vertices of Sn
p .

9 Sierpiński Triangle Graphs

We will be diving deep into the details and properties of just one variation of Sierpiński
graphs, that is, the Sierpiński triangle graphs. We begin by defining the set P̂ for Ŝn

p as,

P̂ = {0̂, 1̂, ..., ˆp− 1}.[1]
Now we move on to define the vertex set and the edge set of Ŝn

p . We express the vertex

set of Ŝn
p as V(Ŝn

p ) and define it as, V (Ŝn
p ) = P̂

⋃
{sîj|s ∈ P v−1, v ∈ [n], i, j ∈P C2}.

The edge set is expressed as E(Ŝn
p ) and defined as E(Ŝn+1

p ) = {{k̂, knĵk}|k ∈ P ; j ∈
P{k}}

⋃
{{sîj, sîk}|s ∈ P n; i ∈ P ;

j, k ∈P−{i} C2}
⋃
{{skin−v îj, sîk}|s ∈ P v−1; v ∈ [n]; i ∈ P ; j, k ∈ P − {i}}.[1]

The number of vertices in Ŝn
p is represented by |Ŝn

p | and we get that[1]:

Ŝn
p = |Sn+1

p | − |Sn+1
p |−p

2

=pn+1 − pn+1−p
2

=pn+1+p
2

=p
2
(pn + 1)

The number of edges in Ŝn
p is represented by ||Ŝn

p || and we get that[1]:

||Ŝn
p ||=(number of unit p-gons in Sn+1

p ) ·P C2

=PC2 · pn
=p−1

2
(pn+1)

Now we define the 3 types of vertices in Ŝn
p [1]:

1. Primitive Vertices : The extreme vertices of Ŝn
p , represented by k̂ where k ∈ P ,

are called the primitive vertices of Ŝn
p . The primitive vertices are p in number.

2. Critical Vertices : Moves of the largest disc n+1 between pegs i and j in Switching
Tower of Hanoi are reflected by vertex îj in Ŝn

p and are called critical vertices of

Ŝn
p . The critical vertices are pC2 in number.

3. Generic Vertices : All vertices other than the primitive and critical vertices in Ŝn
p

are called generic vertices of Ŝn
p . The generic vertices are

p
2
(pn−1)−pC2 in number.

There are generally three types of edges in the graph Ŝn+1
3 .[1]
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Figure 4: Sierpiński traingle graph Ŝ3
3 with Sierpiński graph S3

3 embedded within

1. The edges with a primitive end vertex is represented as {k̂, knĵk}. Such edges are
p(p-1) in number.

2. The second type of edges are of form {sîj, sîk}. Such edges are 1
2
(p−1)(p−2)pn+1.

3. The third and last type of edges are of form {skin−v îj, sîk}. Such edges are p(p-
1)(pn-1) in number.

The primitive vertices of Ŝn
p have degree p-1, same as the extreme vertices of Sn+1

p .

However, all other vertices of Ŝn
p have degree 2(p-1), as these vertices are formed by

contracting an edge. In Sn+1
p , all but the extreme vertices have degree p. Let, x, y ∈

V (Sn+1
p )−{k|k ∈ P}. Then deg(x)=deg(y)=p. On contracting edge xy, the two vertices

merge into one and each loses an edge from the total edges incident on them. Thus the
new vertex xy has degree 2(p-1).
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10 Metric Properties of Ŝn
3

Theorem 10.0.1 (Proposition 1 in [1]). For n ∈ N and v ∈ [n]0, and all s, t ∈ V (Ŝv)
we have
d(n)(s, t) = 2n−vd(v)(s, t)
The number of shortest s,t-paths in Ŝn is same as in Ŝv.
(The canonical distance function on Ŝn defined by d(n) is comprised of the sums of the
lengths of the shortest paths.

Proof. Base Case: The theorem holds for n=0.
Induction Hypothesis: Let us assume that the theorem holds for Ŝn

3 .
Inductive Step: Ŝn+1

3 is obtained from Ŝn
3 by replacing each edge with a path of length

2. The extra vertex lies in T n+1 and produces two new incident edges with their other
endpoints in T n+1 as well. The new edges do not belong to a shortest s,t-path. So, every
shortest s,t-path in Ŝn+1

3 stems from precisely one shortest s,t-path in Ŝn
3 whose length

has doubled.

Theorem 10.0.2 (Theorem 1 in [1]). For k, l ∈ T , there is a unique shortest k̂, l̂-path
in Ŝ0 with length
d(0)(k̂, l̂) = (k ̸= l)
[(k ̸= l) = 1 if k ̸= l and 0 if k = l]
For v ∈ N and s ∈ T v we have:
d(v)(s, l̂) = 1 + (s1 = l) +

∑v
d=2(sd ̸= l)2d−1

and there are 1+(s1 = l) shortest s, l̂-paths in Ŝv.

Proof. If s = sv+1s ∈ T v+1,
d(v+1)(s, l̂) = d(v)(s, l̂) + (sv+1 ̸= l)2v

=1+(s1 = l) +
∑v

d=2(sd ̸= l)2d−1 + (sv+1 ̸= l)2v

=1+(s1 = l) +
∑v+1

d=2(sd ̸= l)2d−1

For Sn+1
3 , the distance between vertices is and j is represented by dn+1(is, j). There

are two possible cases[1]:

• For i ̸= j, any shortest path from is to j will correspond to a shortest path in Ŝn

from s to k̂, with k=3-i-j and i is concatenated to the left of the vertices on that
path and the last vertex being replaced by j.

• For i = j, the shortest path may run through either of the vertices k ∈ T , k ̸= i,
and we have to choose the shorter one or both if they are equal in length, that is,
d(n+1)(is, i) = min{d(n)(s, k̂)|k ∈ T − {i}}+ 2n.

If s = in, then by theorem 4.0.2
d(n)(s, k̂) = 2n − 1
If s = ims with maximal k ∈ [n]0
d(n)(s, k̂) = 1 + (s1 = k) +

∑n−m
d=2 (sd ̸= k)2d−1 +

∑n
d=n−m+1(i ̸= k)2d−1

When m=n-1, d(n+1)(is, j) is minimal for k ̸= s1, that is, for both k ∈ T − i if s1 = i and
otherwise exclusively for k = 3− i− s1.
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11 Metric Properties of Sierpiński Triangle Graphs

(Ŝn
p )

First we state some preliminary metric properties of Ŝn
p .

• For s, t ∈ V (Ŝn
p ) and v ∈ [n]0,

d(n)(s, t) = 2n−vd(v)(s, t)[1]

• d(0)(k̂, l̂) = (k ̸= l)[1]

• d(v)(sîj, l̂)==1+(i ̸= j ̸= l) +
∑v

d=2(sd ̸= l)2d−1.[1]
There are 1+ (i ̸= j ̸= l) shortest paths.

• diam(Ŝn
p )=2n[1]

Now we move on to the distances of the various types of vertices.

11.1 Distance from Primitive Vertices

In this subsection, we discuss the properties related to the distance of the
primitive vertices.

• For p ≥ 3 and ∀s ∈ V (Ŝn
p ),∑p−1

l=0 d
(n)(s, l̂) = (p− 1)2n[1]

• Total distance of a given primitive vertex, say l̂

d(n)(l̂) =
|Ŝn

p |
∑p−1

l=0 d(n)(s,l̂)

p

=p
2
(pn + 1)(p− 1)2n 1

p

=p−1
2
2n(pn + 1)[1]

Definition : For connected graph G and a fixed vertex v ∈ V (G), we define the periphery
of v as[1]:
EG(v) = {w ∈ V (G)|d(v, w) = ϵ(v)}

Theorem 11.1.1 (Theorem 2 in [1]). For p ∈ N2 and n ∈ N0,
|EŜn

p+1
(pn)| = |V (Ŝn

p )|
Moreover, the graph induced by EŜn

p+1
(pn) in Ŝn

p+1 is equal to Ŝn
p .

Proof. ϵ(p̂) = diam(Ŝn
p+1) = 2n

sîj ∈ EŜn
p+1

(pn)⇐⇒ |{i, j, p}| = 3 and ∀d ∈ [v − 1] : s1+d ̸= p

⇐⇒ {i, j} ∈P C2 and ∀d ∈ [v − 1] : s1+d ∈ P
⇐⇒ sîj ∈ V (Ŝn

p )

11.2 Distance from Critical Vertices

For the distance between non-primitive vertices, the task may be reduced if the vertices
have a common prefix r ∈ Pm, where m ∈ N0. If v ∈ N, µ ∈ [v], s ∈ P v−1, t ∈ P µ−1, and
i, j, k, l ∈P C2, then[1]:
d(m+v)(rsîj, rtk̂l) = d(v)(sîj, tk̂l) = 2−md(m+v)(sîj, tk̂l)
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Each shortest path between two generic vertices must go through either one or two critical
vertices. If the shortest path passes through three generic vertices, then the path is from
some critical vertex îj to some other critical vertex k̂l via another critical vertex halfway
through the path, because the passage through two subgraphs isomorphic to Ŝn

p already

contribute to 2 · 2n to the length of the path, thus exceeding the diameter of Ŝn+1
p in all

other cases.
The shortest path between rsîj and rtk̂l has a unique shortest path if and only if
|{i, j, k, l}| < 4 and for |{i, j, k, l}| = 4, we have as many as four shortest paths, namely
those passing through critical vertices îk, îl, ĵk, or ĵl.
Considering the generic vertex is = isĵk, we want to find the shortest path from is to
ˆlm. There are two possible scenarios for the shortest path from is to ˆlm[1]:

• (Case 1: |{i, l,m}| = 2) For i=l, d(n+1)(isĵk, ˆim) = d(n)(sĵk, m̂) with 1+(|{j, k,m}| =
3) shortest paths.

• (Case 2: |{i, l,m}| = 3) In this case we need to compare two distances and decide
which is the shortest path.
d(n+1)(isĵk, ˆlm) = min{d(n+1)(isĵk, îl)+d(n+1)(îl, ˆlm), d(n+1)(isĵk, ˆim)+d(n+1)( ˆim, ˆlm)} =
min{d(n+1)(sĵk, l̂), d(n+1)(sĵk, m̂)}+ 2n

Comparing d(n)(sĵk, l̂) and d(n)(sĵk, m̂) is equivalent to comparing ρn with 0, where
ρv =

∑v
d=1 βd · 2d−1, v ∈ [n+ 1]0.

Here, β1 = (j ̸= l)(k ̸= l) − (j ̸= m)(k ̸= m) and βd = (sd = m) − (sd = l) for
d ∈ [n]− 1. [βd ∈ {−1, 0, 1}, |ρv| ≤ 2v − 1].
Now, the comparison of ρ with 0 is equivalent to the comparison of ρn−1 with
−βn · 2n−1. Here, if βn = 1 then ρ ≥ 0 and if βn = −1 then ρ ≤ 0. Otherwise we
compare ρn−1 with 0 and we repeat the process by replacing v = n with v − 1 and
we use the new input sv as long as v ∈ N. We continue until we get ρ ≥ 0, ρ ≤ 0,
or until we reach β1 and if β1 = 0 then ρ == 0.

sd βd sign shortest path via number of shortest paths

m 1 > ˆim 1+(|{j, k,m}| = 3)

α̂m 1 > ˆim 1
α 0 undecided
ˆlm 0 = îl or ˆim 2

ˆα1α2 0 = îl or ˆim 4

l -1 < îl 1+(|{j, k, l}| = 3)

α̂l -1 < îl 1

Table 1: Decision table for d(n+1)(isĵk, ˆlm), |{i, l,m}| = 3;α(1,2) ∈ P − {l,m}, d ∈ [n]
[Table 1 in [1]]

An algorithm that decides about the shortest path to a fixed critical vertex ˆlm can
be based on the simple finite automaton of figure 5. It consists of a transient state 0 and
two absorbing states L and M. The data sd ∈ s for d ∈ [n] are inserted, starting with d=n
in state 0. If sd is any of the labels of the connecting lines we move to the corresponding
absorbing state and stop. If we reach absorbing state L or M, then it means that, îl or ˆim

20



Figure 5: Decision automaton for the goal vertex ˆlm

respectively are the shortest path. For any other input we stay at state 0 and continue.
If even after reaching s1 we still stay at state 0 we infer that the two paths are equal in
length.

11.3 Distance from Generic Vertices

In this subsection, we consider the distance between two generic vertices is and jt in Ŝn+1
p .

The shortest is,jt-path could either go directly or through any of the other subgraphs iso-
morpic to Ŝn

p .
The distance corresponding to the direct path is denoted by[1]:

d
(n+1)
p (is, jt) = d(n+1)(is, îj) + 2n−vd(v+1)(jt, îj)

=d(n)(s, ĵ) + 2n−vd(v)(t, î)
We denote the distance corresponding to the shortest path through any of the other sub-
graphs isomorphic to Ŝn

p by[1]:

d
(n+1)
k (is, jt) = d(n+1)(is, îk) + d(îk, ĵk) + 2n−vd(v+1)(jt, ĵk)

=d(n)(s, k̂) + 2n + 2(n−v)d(v)(t, k̂), where k ∈ [p]0
Next we compare the two types of possible paths and decide which is the shorter one,
thus achieving the shortest is,jt-path. Thus we write the shortest is,jt-path as[1]:

d(n+1)(is, jt) = min{d(n+1)
k (is, jt)|k ∈ [p+ 1]0 − {i, j}}.

To decide for which k the minimum is attained, we compare for k ∈ P − {i, j}. We

can observe that the comparison between d
(n+1)
k (is, jt) and d

(n+1)
p (is, jt) is equivalent to

the comparison of ρn with 2n. For m ∈ [n+ 1]0, ρm =
∑m

d=1(σd, τd) · 2d−1

Here, taking s = sn...s2x̂y, t = tv...t2ŵz we can define[1]:

• σd = (sd = k)− (sd = j), for d ∈ [n]− 1

• σ1 = (x ̸= j)(y ̸= j)− (x ̸= k)(y ̸= k)

• τd = (td−n+v = k)− (td−n+v = i), for d ∈ [n]− [n− v + 1]

• τn−v+1 = (w ̸= i)(z ̸= i)− (w ̸= k)(z ̸= k)

• τd = 0, for d ∈ [n− v]

Adding to this we know from the definitions that, (σd + τd) ∈ {−2,−1, 0, 1, 2} and
2− 2m+1 ≤ ρm ≤ 2m+1 − 2

We start in state A of the automaton beginning at d=n and enter the data σd + τd.
For d ∈ [n− v]0, we get τd = 0. If we end in states A or D, it means that the direct path
is shorter than any bypass through a subgraph kŜn

p . Ending in states C or E implies that
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sd σd tδ τδ + n− v

k or α̂k 1 k or β̂k 1

α or ĵk or ˆα1α2 0 β or îk or ˆβ1β2 0

j or α̂j -1 i or β̂i -1

Table 2: Decision table for d(n+1)(is, jt);α(1,2) ∈ P −{j, k}, β(1,2) ∈ P −{i, k}, d ∈ [n], δ ∈
[v](τd = 0 for d ∈ [n− v])[Table 2 in [1]]

the bypass is necessary and it can only be reached if one of the inputs is σd + τd = 2.
However, if we end in state B, then we can infer that both paths are equal. The decision
automaton has been represented in Figure 3. (All states A, B, C, D, and E refer to the
states in Romik’s automaton.)[1][3]

Figure 6: Decision automaton for shortest path for generic vertices

For the Sierpiński triangle graphs, we have to combine all admissible shortest paths to
and from the intermediate critical vertices. There are at most 8 optimal paths between
any 2 vertices.
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11.4 Additional Metric Properties

We state some additional metric properties of Ŝn
p

Definition : xp(λ) = |{s ∈ V (Ŝn
p )|d(n)(s, l̂) = λ}| for λ ∈ [2n] and fixed l ∈ P [1]

Theorem 11.4.1 (Proposition 2 in [1]). For n ∈ N and {l,m} ∈T C2,
d(n)( ˆlm) = 7

10
6n + 2n − 1

5

in Ŝn
3 , that is, asymptotically, for large n, the average distance to a fixed critical vertex

is seventy-percent of the average distance to a fixed primitive vertex.

Proof. We may assume , l, m=1, 2 Let, Cn = {0v1̂2|v ∈ [n]0}
⋃
{0̂}, that is the set of the

vertices in the central vertical axis of Ŝn
3 , and |Cn| = n+ 1.

Now, we define cn =
∑

c∈Cn
d(n)(c, 1̂) and we get a recurrence relation:

c0 = 1, and ∀n ∈ N0 we get, cn+1 = cn + (n+ 2) · 2n.
The solution to this recurrence relation can be expressed as cn = n · 2n + 1.
Let, Sn denote the set of those vertices of Ŝn

3 which lie strictly to the left of the central
vertical axis. Therefore, |Sn| = 1

2
(|Ŝn

3 | − |Cn|) = 1
4
(3n+1 − 2n+ 1)

For sn =
∑

s∈Sn
d(n)(s, 1̂), we get the recurrence:

sn = 0, and ∀n ∈ N0 we get, sn+1 = d(n)(1̂)−2n+1+sn+|Sn|·2n = sn+(7·3n−2n−3)·2n−2.
This recurrence relation has the solution sn = 7

20
6n − 2n−1

4
2n − 3

5

∴ d(n+1)(1̂2) = 2d(n)(1̂) + 2sn + cn +
1
2
(3n+1 − 1) · 2n

=⇒ d(n)(1̂2) = 7
10
6n + 2n − 1

5

Theorem 11.4.2 (Proposition 3 in [1]). Let, p ∈ N2 and n ∈ N0. Then ∀v ∈ [n]0, and∀m ∈
[2n−1−v]0
xp((2m+ 1)2v) = 1

2
(p− 1)q(m)+1((p− 1)v + 1) and xp(2

n) = p−1
2
((p− 1)n + 1)

(q(m)= number of non-zero bits in binary representation of m)

Proof. We will use induction to prove this theorem. Base Case: For m=0, v=0, we get
xp(1) = p− 1
Induction Hypothesis: Let us assume that the theorem holds true for uptill xp(2

n).
Inductive Step: Every λ ∈ [2n+1−1] can be uniquely represented in binary with v ∈ [n+1]0
: λ = (λn...λv+110

v)2
λ = (2m+ 1) · 2v with m=(λn...λv+1)2 ∈ [2n−v]0
From the recursive definition of Sierpiński triangle graphs, λn = 0, that is λ ∈ [2n − 1],
then xp is the same as in Sn

p and also the m is the same. Also for λ = 2n, that is, v=n

and m=0, xp(2
n) = p−1

2
((p− 10n + 1)

For λ ∈ [2n+1 − 1]− [2n],
xp(λ) = (p− 1)xp(λ− 2n)
∴ The theorem holds for λ ∈ [2n+1 − 1]
Let λ ∈ 2n+1, and we subtract the number of intersection points of the p-1 copies to avoid
double counting while calculating xp(2

n+1)
∴ xp(2

n+1) = (p− 1)xp · 2n −p−1 C2

=⇒ xp(2
n+1) = p−1

2
((p− 1)n+1 + 1)

Thus, the theorem holds for all values of m, v ∈ N0

Theorem 11.4.3 (Proposition 4 in [1]). Let, p ∈ N2, i ∈ P , and n ∈ N0. Then
∀s ∈ V (iŜn

p ) :

ϵ(s) = max{d(n+1)(s, l̂)|l ∈ P − {i}}
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Proof. Let, p ∈ N3. This assumption ensures that ϵ(s) > 2n

Let, t ∈ V (Ŝn+1
p ) be eccentric with respect to s, that is, d(n+1)(s, t) = ϵ(s)

Then t ∈ V (jŜn
p ) for some j ∈ P − i because otherwise d(n+1)(s, t) ≤ 2n

∴ d(n+1)(s, t) ≤ d(n+1)(s, îj)+d(n+1)(îj, t) ≤ d(n+1)(s, îj)+2n = d(n+1)(s, îj)+d(n+1)(îj, ĵ) =
d(n+1)(s, ĵ)
∴ ĵ is also eccentric with respect to s as well.

Theorem 11.4.4 (Theorem 3 in [1]). For p ∈ N2 and n ∈ N0, the periphery of Ŝn
p is

given by:
P (Ŝn

p ) = P̂
⋃
{sv...s2îj ∈ V (Ŝn

p )|{i, j, s2, ..., sv} ≠ P}
For n ∈ [p− 1]0, we have rad(Ŝn

p ) = 2n and C(Ŝn
p ) = V (Ŝn

p ) is the center of Ŝn
p .

If n ∈ Np−1, then rad(Ŝn
p ) = 2n−p+1·(2d−1−1) and C(Ŝn

p ) = {sp−1...s2îj ∈ V (Ŝn
p )|{i, j, s2, ..., sp−1} =

P}, such that |C(Ŝn
p )| = 1

2
p!

12 Conclusion

In this report we tried to look at the Tower of Hanoi game and one of it’s many variations,
the Switching Tower of Hanoi game. We also took a look at the Hanoi graph and Sierpiński
graph and the various properties related to them. Lastly, we looked into the properties
of a variation of the Sierpiński graphs, that is, the Sierpiński Triangle graphs and their
properties.
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erties of Sierpiński Triangle Graphs., 2022.
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