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A classic puzzle

If two opposite 1-by-1 corner-squares of an 8-by-8 square are
removed, the remaining region cannot be tiled by 1-by-2 and 2-by-1
rectangles.
Each tile has one white square and one black square. But the
region being tiled has unequal numbers of black and white squares.



A less famous problem

However, if we prevent ourselves from removing the corner squares
then we have a fairly simple tiling problem in our hands.



Origin of Domino/Dimer Tilings

The dimer problem was first considered by physicists, at the
intersection of graph theory and enumerative combinatorics.
The classical domino tiling problem considers a rectangle of
dimension m × n, divided into a grid. The problem at hand is to
tile the entire rectangle with vertical and horizontal dominoes (i.e.
1 × 2 and 2 × 1 rectangles, respectively), without any overlap
between any two dominoes.
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A Common Example

Consider this 4× 4 rectangle. It is fairly simple to tile this structure
using 1 × 2 and 2 × 1 tiles. But what if we have a m × n rectangle
with fairly large enough m and n. It becomes difficult to check and
try to find a tiling. Thus, we consider the analogue of this problem
with a perfect matching or dimer cover problem in a graph.



Dimers and Dimer Covers

A dimer in a graph G = (V ,E ) is just an edge e ∈ E .
A dimer cover of a graph (V ,E ) (aka a perfect matching) is a set
E ′ ⊆ E of edges with the property that each v ∈ V belongs to
exactly one e ∈ E ′.



From Dimers to Dominoes I



From Dimers to Dominoes II



From Dimers to Dominoes III



From Dimers to Dominoes IV



Tiling Problems that concern us

From a enumerative combinatorial point of view, we have two
problems that mainly concern us. Given any shape, we consider two
questions at large:
▶ Is the shape tileable using a given set of tiles?
▶ How many ways are there to tile the shape given a set of tiles?
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What are Honeycomb Tilings?
Honeycombs or roughly triangular regions in hexagonal lattice,
represented by Tn are structures with 3 boundaries of the roughly
triangular region, each formed by joining n hexagons, and the entire
being occupied by a Tn−3 honeycomb, where T1 is a single
hexagon.



Introducing the Tiles
Considering any tiling problem of a shape is futile, if we are not
aware of the set of tiles that we are allowed to use. Benzel tilings
and honeycomb tilings allow us to use trihex tiles. Trihex tiles are
basically three hexagons joined edge-to-edge. Owing to symmetry,
it is fairly obvious that we are thus allowed to use three types of
tiles. For the naming of these tiles, we stick with Propp’s and
Thurston’s convention.



The Conjecture

Theorem (Conway, Lagarias)
It is impossible to tile the honeycomb Tn using only tribone tiles.



Some Definitions and Ideas I

The square lattice in R2 consists of lattice points, edges, and cells.
A lattice point is a member of Z2. Two lattice points are neighbors
if they are at distance one from each other, so each lattice point
has exactly four neighbors.

An edge is a line segment connecting two neighboring lattice
points; it is either horizontal or vertical.

A cell is the set of all points making up the interior and boundary
of a square of area one having its four vertices at lattice points.



Some Definitions and Ideas II

A directed path P in the square lattice consists of a sequence of
directed edges specified by a sequence of lattice points
{(xi , yi ) : 0 ≤ i ≤ n}, where the i th directed edge connects
(xi−1, yi−1) to (xi , yi ). It is closed if (x0, y0) = (xn, yn).

A directed path is simple if no edge appears twice and if it does not
cross itself, where we say a path crosses itself if there is 0 < i < n
and j ̸= i , such that (xi , yi ) = (xj , yj) and the two edges from
(xi−1, yi−1) to (xi+1, yi+1) consist of either two horizontal or two
vertical edges.



Some Definitions and Ideas III

A region R is a finite connected set of closed cells.
The topological boundary ∂(C ) of a cell C consists of its four
edges, oriented counterclockwise. The boundary ∂(R) is formed by
taking the set of all edges in ∂(C ) for all cells C in R , and
discarding any edges that occur twice with opposite orientations.

A region R is simply connected if its complement R = R2 − R is
connected and if its boundary edges can be ordered to form a
simple closed path. We call a region to be connected if it cannot
be expressed as the disjoint union of two regions.



Some Definitions and Ideas IV

A simple closed path bounding a simply connected region R is
uniquely specified by its first edge e; we call such a path an
oriented boundary of R with leading edge e and denote it by
∂R(e). The first vertex in ∂R(e) is called the base point of ∂R(e).



Some Definitions and Ideas V

A tile type consists of the set of all translations of a tile.

A tiling problem consists of a region R and a set Σ of tile types. A
region R can be tiled by Σ if there exists a set of tiles in Σ that
cover each cell of R exactly once.



Some Definitions and Ideas VI

We describe directed paths in the square lattice by words in the free
group F =< A,U > on two generators, where A = across, and
U = up. We read each word W (∂R(e)) from right to left to obtain
the counterclockwise directed path ∂R(e) from a given base point
e.

Given an oriented boundary ∂R(e) of a simply connected region R
we let ∂R(e) also stand for the word W (∂R(e)) in F . The words
{∂R(e) : e a counterclockwise oriented edge of ∂R} are cyclic
permutations of each other, and hence are all conjugate in F .

Thus, the combinatorial boundary [∂R] of a simply connected
region R is the conjugacy class in F containing all oriented
boundaries ∂R(e) of R , that is -

[∂R] = {W ∂R(e)W−1 : W ∈ F}



Cycle group, Tile group, and Tile Homotopy group

The cycle group C is the subgroup of the free group F consisting of
all words associated to closed directed paths in the square lattice.

The tile group T (Σ) is a subgroup of F that contains all the
boundaries of the tiles in the set of tiles Σ = {Ri}.

T (Σ) =< W ∂Ri (ei )W
−1 : W ∈ F , 1 ≤ i ≤ m >,

where ∂Ri (ei ) is an oriented boundary of Ri .

The tile group T (Σ) is contained in the cycle group C . We call the
quotient group h(Σ) = C/T (Σ) the tile homotopy group.



Tileability I

Theorem
A simply connected region R has a tiling by tiles in a set Σ only if
the combinatorial boundary [∂R] of R be contained in the tile
group T (Σ).

The idea is intuitive enough and so the proof is not included in the
talk. However one can look at the proof from Conway and
Lagarias’ paper.



Tileability II

Theorem
Any honeycomb Tn is tileable using triangle tiles and tribone tiles
only if n ≡ 0 or 2 (mod 3).

Proof.
The total number of hexagonal cells in Tn is always N = n(n+1)

2 .
Now, as each tile is a combination of 3 hexagons, so N must be
divisible by 3. Thus, for 3 | N, n ≡ 0 or 2 (mod 3).



Hexagonal Lattice to Square Lattice
The problem at hand can now be easily converted to a tiling
problem on the square lattice. For the honeycomb Tn on the
hexagonal lattice to a staircase T ′

n on the square lattice.

Figure 1: Staircase T ′
4

The combinatorial boundary of any staircase T ′
n is thus given by

the representative word ∂(T ′
n) = AnU−n(A−1U)n.



Conversion of Tribone Tiles

As we shift from the hexagonal lattice to the square lattice the tiles
that we use must also change. We notice that the single tribone
tile in the hexagonal lattice decompose into 3 different tiles in the
square lattice which we will call R1, R2, and R3, respectively.

Figure 2: The tiles R1, R2, and R3, respectively

The combinatorial boundary of these tiles are thus,
∂(R1) = AU−3A−1U3, ∂(R2) = A3U−1A−3U, and
∂(R3) = (AU−1)3(A−1U)3.



Cayley Diagram I

The Cayley diagram G(Fg/K ), is a labelled graph with directed
edges associated to the quotient group G = Fg/K of the free
group Fg on g generators, where K is a normal subgroup of
relations. The Cayley diagram of G has a vertex corresponding to
every element W ∈ G , and for each generator Si of Fg there is a
directed labelled edge i from W to SiW . In particular every vertex
in a Cayley diagram has 2g edges incident on it, with g many
directed inwards and g many directed outwards.



Cayley Diagram II

To understand K simply, we consider G(Fg/K ), which is the
undirected labelled graph corresponding to G(Fg/K ). Associate
words W from Fg to directed paths on the edges of undirected
graph G(Fg/K ). We say, that a word W is in K iff it corresponds
to a closed path in G(Fg/K ) starting from the identity vertex I .



A special subgroup H
The special subgroup H of F2 is defined by the property that it has
the associated quotient group G = F2/H, whose undirected Cayley
diagram G(F2/H) is an infinite planar graph, that tiles the plane
using triangles and hexagons.

Figure 3: Cayley diagram G(F2/H)



Some facts related to H

The subgroup of relations H is given by

H = N(< A3,U3, (U−1A)3 >)

The relevance of H is however established through the following
theorem.

Theorem
The tile group T (Σ), and the combinatorial boundaries [∂Tn] for
n ≡ 0 or 2 (mod 3) are all contained in H.



A homomorphism from H to Z I

The winding number w(P; s) of a closed directed path P in G
around s counts the number of times P encloses the cell s in the
counterclockwise direction.
The quantity w(P; s) is additive in nature, that is,
w(P2P1; s) = w(P2; s) + w(P1; s).
Now, for any finite or infinite set of cells S , we have
w(P;S) =

∑
s∈S w(P; s).



A homomorphism from H to Z II

Using the notion of w(P; s) we define a homomorphism
ϕ : H −→ Z, with ϕ(V ) = w(V ;S), where S is the set of all
hexagons in the Cayley diagram G(F2/H).



Answering the conjecture I

Using definition of ϕ, we can easily observe that ϕ(∂(R1)) = 0,
ϕ(∂(R2)) = 0, and ϕ(∂(R3)) = 0. We will check that
ϕ(∂(R3)) = 0, and the rest is done is a similar method.

Now as we know that W ∂(Ri )W
−1 is a conjugate of ∂(Ri ), so

ϕ(W ∂(Ri )W
−1) = ϕ(∂(Ri )).



Answering the conjecture II

Similarly, a computation using ∂(T ′
n) = AnU−n(A−1U)n in the

Cayley diagram gives us that ϕ(∂(T ′
n)) =

[
n+1
3

]
.

Now we asssume that ∂(T ′
n) belongs to the tile group T (Σ), then

∂(T ′
n) =

m∏
i=1

Wi∂(Rki )
ϵiW−1

i ,

where Wi ∈ F2, ki ∈ {1, 2, 3}, and ϵi = 0 or 1.

Thus, ϕ(∂(T ′
n)) =

∑m
i=1 ϵiϕ(∂(Rki )) = 0.

This is a contradiction and hence, ∂(T ′
n) is not in T (Σ), and thus,

Tn is not tileable using tribones.



What are Benzel Tilings?
Benzels form a two-parameter family, with parameters a and b
satisfying a ≤ 2b − 2 and b ≤ 2a− 2. Here is the 5, 7-benzel:



Why Benzels?

The term "Benzel" was coined in 2021 by James Propp, in honor of
the chemical element benzene (whose hexagonal structure reflects
the hexagonal cells of which benzels are composed), the
Mercedes-Benz car company (whose logo is reminiscent of the way
three hexagonal cells meet), and the inventor Gustav Benzel (whose
1870 innovation, the merry-go-round, undergoes rotation in a
manner vaguely reminiscent of the three-fold rotational symmetry
of benzels).



Constructing Benzels I

The question that still lingers is that how do we come up with such
structures from just two given parameters. To answer the question
and to go forth into any tiling of this structure thereof, we will
construct a 4, 6-benzel firsthand.



Constructing Benzels II



Constructing Benzels III



Constructing Benzels IV



Tiles in use

Being a fairly new shape, whose tilings are being considered since
just around 2022, we know very less about such tilings. So we
forget about the phone tiles as of now, as they have not yet been
formally considered for tiling benzels.
Let’s start by considering something very simple. We will start by
using just one type of tiles, that is, the bones, and look at all tilings
using only these.



Tiles in use

Being a fairly new shape, whose tilings are being considered since
just around 2022, we know very less about such tilings. So we
forget about the phone tiles as of now, as they have not yet been
formally considered for tiling benzels.
Let’s start by considering something very simple. We will start by
using just one type of tiles, that is, the bones, and look at all tilings
using only these.



A look into tribone tiling of 5,7-benzel



The statement of the conjecture

Theorem (Propp, Kim)
The (a, b)-benzel can be tiled by tribones if and only if a and b are
paired pentagonal numbers, that is,
{a, b} = {k(3k + 1)/2, k(3k − 1)/2}, for some positive integer k .



Leading to the proof

A variant of Gauss’ shoelace formula allowed James Propp to
compute the signed area (aka algebraic area) enclosed by a closed
polygonal path and, by “twisting” the formula in the manner
prescribed by the work of Conway, Lagarias, and Thurston, to
compute the values of the Conway-Lagarias invariant for all
benzels. This led to the proof of the conjecture.



Gauss shoelace formula

Consider a planar simple polygon with it’s coordinates represented
as vectors v1, ..., vn. Suppose these vectors are such that
Σn
i=1vi = 0. Then with wi = v1 + ...+ vi , the signed area enclosed

by the vertices w1, ...,wn is

1
2

∑
i

wi × vi+1

=
1
2

∑
1≤i<j≤n

vi × vj

=
1
2

∑
1≤i<j≤n

∣∣∣∣xi xj
yi yj

∣∣∣∣ ,where vi = (xi , yi )



Redefining vectors for Hexagonal Grid

For the hexagonal grid we will need three unit vectors a, b, and c.
To remove factors of

√
3, we redefine × so that

a × b = b × c = c × a = +1, b × a = c × b = a × c = −1, and
a × a = b × b = c × c = 0. If each hexagonal cell is assigned area
1, then the signed area enclosed by a path given by the vectors
v1, ..., vn is 1

6
∑

1≤i<j≤n vi × vj .



The New Vectors

(a) The Six Unit Vectors (b) Path enclosing a hexagon



Navigating the Boundary of Benzels I

For a, b with a+ b ≡ c mod 3, we call the (a, b)-benzel a class c
benzel.

Figure 5: The upper and lower stretches of the boundary of a class 0
benzel (left), a class +1 benzel (middle), and a class −1 benzel (right)



Navigating the Boundary of Benzels II

Take a, b with a+ b ≡ 0 mod 3. The upper stretch of the
(a, b)-benzel, starting at the upper right corner of the bounding
hexagon and ending at the upper left corner of the bounding
hexagon is (c,a’,b,a’)t with t = (2b − a)/3.
The lower stretch of the (a, b)-benzel, starting at the lower left
corner of the bounding hexagon and ending at the lower right
corner of the bounding hexagon is (a,c’,a,b’)s with s = (2a− b)/3.



Navigating the Boundary of Benzels III

Thus the counterclockwise boundary of the benzel, starting and
ending at the rightmost corner of the bounding hexagon, is the
concatenation:
(b,a’,b,c’)s (c,a’,b,a’)t (c,b’,c,a’)s (a,b’,c,b’)t (a,c’,a,b’)s

(b,c’,a,c’)t

involving 12s + 12t unit vectors.
Just to be clear, we state that a’ = −a, b’ = −b, and c’ = −c.



Signed area of Benzels I

The value of 1
6
∑

1≤i<j≤n vi × vj can be determined in the general
form and then we can fit the six undetermined coefficients.
Specifically the

(12s+12t
2

)
product terms can be segregated into(6

2

)
· 4 · 4 +

(6
1

)
· 4 · 4 = 336 types, such that the number of terms

vi × vj of each type is a quadratic function of s and t.



Signed area of Benzels II

This implies that the area of the benzel is itself a quadratic
function of s and t, and hence a quadratic function of a and b.
This quadratic function has six undetermined coefficients that can
be determined by finding the area of half a dozen specific benzels
and solving the resulting system of linear equations. We find in this
way that the area of a class 0 benzel is equal to
(−a2 + 4ab − b2 − a− b)/2.



Signed area of Benzels III

Theorem
Let R be a benzel of class c . Then the area of R is

(−a2 + 4ab − b2 − a− b)/2 if c = 0 or − 1

(−a2 + 4ab − b2 − a− b + 2)/2 if c = +1



Shadow Paths I

Conway and Lagarias show that in any simply-connected region R
that can be tiled by stones and bones, the number of right-pointing
stones minus the number of left-pointing stones depends only on
the region being tiled, not the particular tiling. We call this the
rescaled Conway-Thurston invariant and denote it by i(R).



Shadow Paths II
We start at some point p on the boundary of R . Let e0, ..., en be a
counterclockwise path from p and back to itself traversing the
boundary of R . Let us call the path π. For 1 ≤ i ≤ n, π weaves at
step i if ei−1 and ei+1 are parallel, and π winds at step i if
ei−1, ei , ei+1 are consecutive edges of a hexagon.

Figure 6: Weaving and Winding



Shadow Paths III
Now we determine the shadow path π′. The shadow path π′ winds
where π weaves, and π′ weaves where π winds.



Conway-Lagaris Invariant of Various Tiles I

Thus, the Conway-Lagaris Invariant of a right stone is +3.



Conway-Lagaris Invariant of Various Tiles II

Thus, the Conway-Lagaris Invariant of a left stone is −3.



Conway-Lagaris Invariant of Various Tiles III
Thus, the Conway-Lagaris Invariant of a tribone is 0.



Conway-Lagarias Invariant of different classes of Benzels

Theorem
Let R be a benzel of class c . Then I (R), the (unrescaled) Conway
Lagarias invariant of R , is

(−3a2 + 6ab − 3b2 + a+ b)/2 if c = 0

(a2 − 4ab + b2 + a+ b − 2)/2 if c = +1

(−3a2 + 6ab − 3b2 − a− b + 2)/2 if c = −1

This is fairly easy to check and fairly algebraic and so, can be
proven easily. (Try for yourself)



Answering the conjecture

To tile a benzel by just using tribone tiles, the Conway-Lagaris
invariant of the benzel must be 0.
Now, it is fairly simple and number-theoretic in nature to check
that c = 0 is the only case where the Conway-Lagaris invariant of
the benzel can be 0, and we can deduce that
{a, b} = {k(3k + 1)/2, k(3k − 1)/2}, for some positive integer k .
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